diff options
author | Samuel Mimram <smimram@debian.org> | 2006-04-28 14:59:16 +0000 |
---|---|---|
committer | Samuel Mimram <smimram@debian.org> | 2006-04-28 14:59:16 +0000 |
commit | 3ef7797ef6fc605dfafb32523261fe1b023aeecb (patch) | |
tree | ad89c6bb57ceee608fcba2bb3435b74e0f57919e /theories7/Sets/Relations_1_facts.v | |
parent | 018ee3b0c2be79eb81b1f65c3f3fa142d24129c8 (diff) |
Imported Upstream version 8.0pl3+8.1alphaupstream/8.0pl3+8.1alpha
Diffstat (limited to 'theories7/Sets/Relations_1_facts.v')
-rwxr-xr-x | theories7/Sets/Relations_1_facts.v | 109 |
1 files changed, 0 insertions, 109 deletions
diff --git a/theories7/Sets/Relations_1_facts.v b/theories7/Sets/Relations_1_facts.v deleted file mode 100755 index cf73ce8b..00000000 --- a/theories7/Sets/Relations_1_facts.v +++ /dev/null @@ -1,109 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(****************************************************************************) -(* *) -(* Naive Set Theory in Coq *) -(* *) -(* INRIA INRIA *) -(* Rocquencourt Sophia-Antipolis *) -(* *) -(* Coq V6.1 *) -(* *) -(* Gilles Kahn *) -(* Gerard Huet *) -(* *) -(* *) -(* *) -(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *) -(* to the Newton Institute for providing an exceptional work environment *) -(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *) -(****************************************************************************) - -(*i $Id: Relations_1_facts.v,v 1.1.2.1 2004/07/16 19:31:40 herbelin Exp $ i*) - -Require Export Relations_1. - -Definition Complement : (U: Type) (Relation U) -> (Relation U) := - [U: Type] [R: (Relation U)] [x,y: U] ~ (R x y). - -Theorem Rsym_imp_notRsym: (U: Type) (R: (Relation U)) (Symmetric U R) -> - (Symmetric U (Complement U R)). -Proof. -Unfold Symmetric Complement. -Intros U R H' x y H'0; Red; Intro H'1; Apply H'0; Auto with sets. -Qed. - -Theorem Equiv_from_preorder : - (U: Type) (R: (Relation U)) (Preorder U R) -> - (Equivalence U [x,y: U] (R x y) /\ (R y x)). -Proof. -Intros U R H'; Elim H'; Intros H'0 H'1. -Apply Definition_of_equivalence. -Red in H'0; Auto 10 with sets. -2:Red; Intros x y h; Elim h; Intros H'3 H'4; Auto 10 with sets. -Red in H'1; Red; Auto 10 with sets. -Intros x y z h; Elim h; Intros H'3 H'4; Clear h. -Intro h; Elim h; Intros H'5 H'6; Clear h. -Split; Apply H'1 with y; Auto 10 with sets. -Qed. -Hints Resolve Equiv_from_preorder. - -Theorem Equiv_from_order : - (U: Type) (R: (Relation U)) (Order U R) -> - (Equivalence U [x,y: U] (R x y) /\ (R y x)). -Proof. -Intros U R H'; Elim H'; Auto 10 with sets. -Qed. -Hints Resolve Equiv_from_order. - -Theorem contains_is_preorder : - (U: Type) (Preorder (Relation U) (contains U)). -Proof. -Auto 10 with sets. -Qed. -Hints Resolve contains_is_preorder. - -Theorem same_relation_is_equivalence : - (U: Type) (Equivalence (Relation U) (same_relation U)). -Proof. -Unfold 1 same_relation; Auto 10 with sets. -Qed. -Hints Resolve same_relation_is_equivalence. - -Theorem cong_reflexive_same_relation: - (U:Type) (R, R':(Relation U)) (same_relation U R R') -> (Reflexive U R) -> - (Reflexive U R'). -Proof. -Unfold same_relation; Intuition. -Qed. - -Theorem cong_symmetric_same_relation: - (U:Type) (R, R':(Relation U)) (same_relation U R R') -> (Symmetric U R) -> - (Symmetric U R'). -Proof. - Compute;Intros;Elim H;Intros;Clear H;Apply (H3 y x (H0 x y (H2 x y H1))). -(*Intuition.*) -Qed. - -Theorem cong_antisymmetric_same_relation: - (U:Type) (R, R':(Relation U)) (same_relation U R R') -> - (Antisymmetric U R) -> (Antisymmetric U R'). -Proof. - Compute;Intros;Elim H;Intros;Clear H;Apply (H0 x y (H3 x y H1) (H3 y x H2)). -(*Intuition.*) -Qed. - -Theorem cong_transitive_same_relation: - (U:Type) (R, R':(Relation U)) (same_relation U R R') -> (Transitive U R) -> - (Transitive U R'). -Proof. -Intros U R R' H' H'0; Red. -Elim H'. -Intros H'1 H'2 x y z H'3 H'4; Apply H'2. -Apply H'0 with y; Auto with sets. -Qed. |