diff options
author | Samuel Mimram <smimram@debian.org> | 2006-04-28 14:59:16 +0000 |
---|---|---|
committer | Samuel Mimram <smimram@debian.org> | 2006-04-28 14:59:16 +0000 |
commit | 3ef7797ef6fc605dfafb32523261fe1b023aeecb (patch) | |
tree | ad89c6bb57ceee608fcba2bb3435b74e0f57919e /theories7/Sets/Multiset.v | |
parent | 018ee3b0c2be79eb81b1f65c3f3fa142d24129c8 (diff) |
Imported Upstream version 8.0pl3+8.1alphaupstream/8.0pl3+8.1alpha
Diffstat (limited to 'theories7/Sets/Multiset.v')
-rwxr-xr-x | theories7/Sets/Multiset.v | 186 |
1 files changed, 0 insertions, 186 deletions
diff --git a/theories7/Sets/Multiset.v b/theories7/Sets/Multiset.v deleted file mode 100755 index b5d5edf7..00000000 --- a/theories7/Sets/Multiset.v +++ /dev/null @@ -1,186 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -(*i $Id: Multiset.v,v 1.1.2.1 2004/07/16 19:31:39 herbelin Exp $ i*) - -(* G. Huet 1-9-95 *) - -Require Permut. - -Set Implicit Arguments. - -Section multiset_defs. - -Variable A : Set. -Variable eqA : A -> A -> Prop. -Hypothesis Aeq_dec : (x,y:A){(eqA x y)}+{~(eqA x y)}. - -Inductive multiset : Set := - Bag : (A->nat) -> multiset. - -Definition EmptyBag := (Bag [a:A]O). -Definition SingletonBag := [a:A] - (Bag [a':A]Cases (Aeq_dec a a') of - (left _) => (S O) - | (right _) => O - end - ). - -Definition multiplicity : multiset -> A -> nat := - [m:multiset][a:A]let (f) = m in (f a). - -(** multiset equality *) -Definition meq := [m1,m2:multiset] - (a:A)(multiplicity m1 a)=(multiplicity m2 a). - -Hints Unfold meq multiplicity. - -Lemma meq_refl : (x:multiset)(meq x x). -Proof. -NewDestruct x; Auto. -Qed. -Hints Resolve meq_refl. - -Lemma meq_trans : (x,y,z:multiset)(meq x y)->(meq y z)->(meq x z). -Proof. -Unfold meq. -NewDestruct x; NewDestruct y; NewDestruct z. -Intros; Rewrite H; Auto. -Qed. - -Lemma meq_sym : (x,y:multiset)(meq x y)->(meq y x). -Proof. -Unfold meq. -NewDestruct x; NewDestruct y; Auto. -Qed. -Hints Immediate meq_sym. - -(** multiset union *) -Definition munion := [m1,m2:multiset] - (Bag [a:A](plus (multiplicity m1 a)(multiplicity m2 a))). - -Lemma munion_empty_left : - (x:multiset)(meq x (munion EmptyBag x)). -Proof. -Unfold meq; Unfold munion; Simpl; Auto. -Qed. -Hints Resolve munion_empty_left. - -Lemma munion_empty_right : - (x:multiset)(meq x (munion x EmptyBag)). -Proof. -Unfold meq; Unfold munion; Simpl; Auto. -Qed. - - -Require Plus. (* comm. and ass. of plus *) - -Lemma munion_comm : (x,y:multiset)(meq (munion x y) (munion y x)). -Proof. -Unfold meq; Unfold multiplicity; Unfold munion. -NewDestruct x; NewDestruct y; Auto with arith. -Qed. -Hints Resolve munion_comm. - -Lemma munion_ass : - (x,y,z:multiset)(meq (munion (munion x y) z) (munion x (munion y z))). -Proof. -Unfold meq; Unfold munion; Unfold multiplicity. -NewDestruct x; NewDestruct y; NewDestruct z; Auto with arith. -Qed. -Hints Resolve munion_ass. - -Lemma meq_left : (x,y,z:multiset)(meq x y)->(meq (munion x z) (munion y z)). -Proof. -Unfold meq; Unfold munion; Unfold multiplicity. -NewDestruct x; NewDestruct y; NewDestruct z. -Intros; Elim H; Auto with arith. -Qed. -Hints Resolve meq_left. - -Lemma meq_right : (x,y,z:multiset)(meq x y)->(meq (munion z x) (munion z y)). -Proof. -Unfold meq; Unfold munion; Unfold multiplicity. -NewDestruct x; NewDestruct y; NewDestruct z. -Intros; Elim H; Auto. -Qed. -Hints Resolve meq_right. - - -(** Here we should make multiset an abstract datatype, by hiding [Bag], - [munion], [multiplicity]; all further properties are proved abstractly *) - -Lemma munion_rotate : - (x,y,z:multiset)(meq (munion x (munion y z)) (munion z (munion x y))). -Proof. -Intros; Apply (op_rotate multiset munion meq); Auto. -Exact meq_trans. -Qed. - -Lemma meq_congr : (x,y,z,t:multiset)(meq x y)->(meq z t)-> - (meq (munion x z) (munion y t)). -Proof. -Intros; Apply (cong_congr multiset munion meq); Auto. -Exact meq_trans. -Qed. - -Lemma munion_perm_left : - (x,y,z:multiset)(meq (munion x (munion y z)) (munion y (munion x z))). -Proof. -Intros; Apply (perm_left multiset munion meq); Auto. -Exact meq_trans. -Qed. - -Lemma multiset_twist1 : (x,y,z,t:multiset) - (meq (munion x (munion (munion y z) t)) (munion (munion y (munion x t)) z)). -Proof. -Intros; Apply (twist multiset munion meq); Auto. -Exact meq_trans. -Qed. - -Lemma multiset_twist2 : (x,y,z,t:multiset) - (meq (munion x (munion (munion y z) t)) (munion (munion y (munion x z)) t)). -Proof. -Intros; Apply meq_trans with (munion (munion x (munion y z)) t). -Apply meq_sym; Apply munion_ass. -Apply meq_left; Apply munion_perm_left. -Qed. - -(** specific for treesort *) - -Lemma treesort_twist1 : (x,y,z,t,u:multiset) (meq u (munion y z)) -> - (meq (munion x (munion u t)) (munion (munion y (munion x t)) z)). -Proof. -Intros; Apply meq_trans with (munion x (munion (munion y z) t)). -Apply meq_right; Apply meq_left; Trivial. -Apply multiset_twist1. -Qed. - -Lemma treesort_twist2 : (x,y,z,t,u:multiset) (meq u (munion y z)) -> - (meq (munion x (munion u t)) (munion (munion y (munion x z)) t)). -Proof. -Intros; Apply meq_trans with (munion x (munion (munion y z) t)). -Apply meq_right; Apply meq_left; Trivial. -Apply multiset_twist2. -Qed. - - -(*i theory of minter to do similarly -Require Min. -(* multiset intersection *) -Definition minter := [m1,m2:multiset] - (Bag [a:A](min (multiplicity m1 a)(multiplicity m2 a))). -i*) - -End multiset_defs. - -Unset Implicit Arguments. - -Hints Unfold meq multiplicity : v62 datatypes. -Hints Resolve munion_empty_right munion_comm munion_ass meq_left meq_right munion_empty_left : v62 datatypes. -Hints Immediate meq_sym : v62 datatypes. |