diff options
author | Samuel Mimram <smimram@debian.org> | 2006-04-28 14:59:16 +0000 |
---|---|---|
committer | Samuel Mimram <smimram@debian.org> | 2006-04-28 14:59:16 +0000 |
commit | 3ef7797ef6fc605dfafb32523261fe1b023aeecb (patch) | |
tree | ad89c6bb57ceee608fcba2bb3435b74e0f57919e /theories7/Sets/Finite_sets_facts.v | |
parent | 018ee3b0c2be79eb81b1f65c3f3fa142d24129c8 (diff) |
Imported Upstream version 8.0pl3+8.1alphaupstream/8.0pl3+8.1alpha
Diffstat (limited to 'theories7/Sets/Finite_sets_facts.v')
-rwxr-xr-x | theories7/Sets/Finite_sets_facts.v | 345 |
1 files changed, 0 insertions, 345 deletions
diff --git a/theories7/Sets/Finite_sets_facts.v b/theories7/Sets/Finite_sets_facts.v deleted file mode 100755 index 63d4d2ad..00000000 --- a/theories7/Sets/Finite_sets_facts.v +++ /dev/null @@ -1,345 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(****************************************************************************) -(* *) -(* Naive Set Theory in Coq *) -(* *) -(* INRIA INRIA *) -(* Rocquencourt Sophia-Antipolis *) -(* *) -(* Coq V6.1 *) -(* *) -(* Gilles Kahn *) -(* Gerard Huet *) -(* *) -(* *) -(* *) -(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *) -(* to the Newton Institute for providing an exceptional work environment *) -(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *) -(****************************************************************************) - -(*i $Id: Finite_sets_facts.v,v 1.1.2.1 2004/07/16 19:31:39 herbelin Exp $ i*) - -Require Export Finite_sets. -Require Export Constructive_sets. -Require Export Classical_Type. -Require Export Classical_sets. -Require Export Powerset. -Require Export Powerset_facts. -Require Export Powerset_Classical_facts. -Require Export Gt. -Require Export Lt. - -Section Finite_sets_facts. -Variable U: Type. - -Lemma finite_cardinal : - (X: (Ensemble U)) (Finite U X) -> (EX n:nat |(cardinal U X n)). -Proof. -NewInduction 1 as [|A _ [n H]]. -Exists O; Auto with sets. -Exists (S n); Auto with sets. -Qed. - -Lemma cardinal_finite: - (X: (Ensemble U)) (n: nat) (cardinal U X n) -> (Finite U X). -Proof. -NewInduction 1; Auto with sets. -Qed. - -Theorem Add_preserves_Finite: - (X: (Ensemble U)) (x: U) (Finite U X) -> (Finite U (Add U X x)). -Proof. -Intros X x H'. -Elim (classic (In U X x)); Intro H'0; Auto with sets. -Rewrite (Non_disjoint_union U X x); Auto with sets. -Qed. -Hints Resolve Add_preserves_Finite. - -Theorem Singleton_is_finite: (x: U) (Finite U (Singleton U x)). -Proof. -Intro x; Rewrite <- (Empty_set_zero U (Singleton U x)). -Change (Finite U (Add U (Empty_set U) x)); Auto with sets. -Qed. -Hints Resolve Singleton_is_finite. - -Theorem Union_preserves_Finite: - (X, Y: (Ensemble U)) (Finite U X) -> (Finite U Y) -> - (Finite U (Union U X Y)). -Proof. -Intros X Y H'; Elim H'. -Rewrite (Empty_set_zero U Y); Auto with sets. -Intros A H'0 H'1 x H'2 H'3. -Rewrite (Union_commutative U (Add U A x) Y). -Rewrite <- (Union_add U Y A x). -Rewrite (Union_commutative U Y A); Auto with sets. -Qed. - -Lemma Finite_downward_closed: - (A: (Ensemble U)) (Finite U A) -> - (X: (Ensemble U)) (Included U X A) -> (Finite U X). -Proof. -Intros A H'; Elim H'; Auto with sets. -Intros X H'0. -Rewrite (less_than_empty U X H'0); Auto with sets. -Intros; Elim Included_Add with U X A0 x; Auto with sets. -NewDestruct 1 as [A' [H5 H6]]. -Rewrite H5; Auto with sets. -Qed. - -Lemma Intersection_preserves_finite: - (A: (Ensemble U)) (Finite U A) -> - (X: (Ensemble U)) (Finite U (Intersection U X A)). -Proof. -Intros A H' X; Apply Finite_downward_closed with A; Auto with sets. -Qed. - -Lemma cardinalO_empty: - (X: (Ensemble U)) (cardinal U X O) -> X == (Empty_set U). -Proof. -Intros X H; Apply (cardinal_invert U X O); Trivial with sets. -Qed. -Hints Resolve cardinalO_empty. - -Lemma inh_card_gt_O: - (X: (Ensemble U)) (Inhabited U X) -> (n: nat) (cardinal U X n) -> (gt n O). -Proof. -NewInduction 1 as [x H']. -Intros n H'0. -Elim (gt_O_eq n); Auto with sets. -Intro H'1; Generalize H'; Generalize H'0. -Rewrite <- H'1; Intro H'2. -Rewrite (cardinalO_empty X); Auto with sets. -Intro H'3; Elim H'3. -Qed. - -Lemma card_soustr_1: - (X: (Ensemble U)) (n: nat) (cardinal U X n) -> - (x: U) (In U X x) -> (cardinal U (Subtract U X x) (pred n)). -Proof. -Intros X n H'; Elim H'. -Intros x H'0; Elim H'0. -Clear H' n X. -Intros X n H' H'0 x H'1 x0 H'2. -Elim (classic (In U X x0)). -Intro H'4; Rewrite (add_soustr_xy U X x x0). -Elim (classic x == x0). -Intro H'5. -Absurd (In U X x0); Auto with sets. -Rewrite <- H'5; Auto with sets. -Intro H'3; Try Assumption. -Cut (S (pred n)) = (pred (S n)). -Intro H'5; Rewrite <- H'5. -Apply card_add; Auto with sets. -Red; Intro H'6; Elim H'6. -Intros H'7 H'8; Try Assumption. -Elim H'1; Auto with sets. -Unfold 2 pred; Symmetry. -Apply S_pred with m := O. -Change (gt n O). -Apply inh_card_gt_O with X := X; Auto with sets. -Apply Inhabited_intro with x := x0; Auto with sets. -Red; Intro H'3. -Apply H'1. -Elim H'3; Auto with sets. -Rewrite H'3; Auto with sets. -Elim (classic x == x0). -Intro H'3; Rewrite <- H'3. -Cut (Subtract U (Add U X x) x) == X; Auto with sets. -Intro H'4; Rewrite H'4; Auto with sets. -Intros H'3 H'4; Try Assumption. -Absurd (In U (Add U X x) x0); Auto with sets. -Red; Intro H'5; Try Exact H'5. -LApply (Add_inv U X x x0); Tauto. -Qed. - -Lemma cardinal_is_functional: - (X: (Ensemble U)) (c1: nat) (cardinal U X c1) -> - (Y: (Ensemble U)) (c2: nat) (cardinal U Y c2) -> X == Y -> - c1 = c2. -Proof. -Intros X c1 H'; Elim H'. -Intros Y c2 H'0; Elim H'0; Auto with sets. -Intros A n H'1 H'2 x H'3 H'5. -Elim (not_Empty_Add U A x); Auto with sets. -Clear H' c1 X. -Intros X n H' H'0 x H'1 Y c2 H'2. -Elim H'2. -Intro H'3. -Elim (not_Empty_Add U X x); Auto with sets. -Clear H'2 c2 Y. -Intros X0 c2 H'2 H'3 x0 H'4 H'5. -Elim (classic (In U X0 x)). -Intro H'6; Apply f_equal with nat. -Apply H'0 with Y := (Subtract U (Add U X0 x0) x). -ElimType (pred (S c2)) = c2; Auto with sets. -Apply card_soustr_1; Auto with sets. -Rewrite <- H'5. -Apply Sub_Add_new; Auto with sets. -Elim (classic x == x0). -Intros H'6 H'7; Apply f_equal with nat. -Apply H'0 with Y := X0; Auto with sets. -Apply Simplify_add with x := x; Auto with sets. -Pattern 2 x; Rewrite H'6; Auto with sets. -Intros H'6 H'7. -Absurd (Add U X x) == (Add U X0 x0); Auto with sets. -Clear H'0 H' H'3 n H'5 H'4 H'2 H'1 c2. -Red; Intro H'. -LApply (Extension U (Add U X x) (Add U X0 x0)); Auto with sets. -Clear H'. -Intro H'; Red in H'. -Elim H'; Intros H'0 H'1; Red in H'0; Clear H' H'1. -Absurd (In U (Add U X0 x0) x); Auto with sets. -LApply (Add_inv U X0 x0 x); [ Intuition | Apply (H'0 x); Apply Add_intro2 ]. -Qed. - -Lemma cardinal_Empty : (m:nat)(cardinal U (Empty_set U) m) -> O = m. -Proof. -Intros m Cm; Generalize (cardinal_invert U (Empty_set U) m Cm). -Elim m; Auto with sets. -Intros; Elim H0; Intros; Elim H1; Intros; Elim H2; Intros. -Elim (not_Empty_Add U x x0 H3). -Qed. - -Lemma cardinal_unicity : - (X: (Ensemble U)) (n: nat) (cardinal U X n) -> - (m: nat) (cardinal U X m) -> n = m. -Proof. -Intros; Apply cardinal_is_functional with X X; Auto with sets. -Qed. - -Lemma card_Add_gen: - (A: (Ensemble U)) - (x: U) (n, n': nat) (cardinal U A n) -> (cardinal U (Add U A x) n') -> - (le n' (S n)). -Proof. -Intros A x n n' H'. -Elim (classic (In U A x)). -Intro H'0. -Rewrite (Non_disjoint_union U A x H'0). -Intro H'1; Cut n = n'. -Intro E; Rewrite E; Auto with sets. -Apply cardinal_unicity with A; Auto with sets. -Intros H'0 H'1. -Cut n'=(S n). -Intro E; Rewrite E; Auto with sets. -Apply cardinal_unicity with (Add U A x); Auto with sets. -Qed. - -Lemma incl_st_card_lt: - (X: (Ensemble U)) (c1: nat) (cardinal U X c1) -> - (Y: (Ensemble U)) (c2: nat) (cardinal U Y c2) -> (Strict_Included U X Y) -> - (gt c2 c1). -Proof. -Intros X c1 H'; Elim H'. -Intros Y c2 H'0; Elim H'0; Auto with sets arith. -Intro H'1. -Elim (Strict_Included_strict U (Empty_set U)); Auto with sets arith. -Clear H' c1 X. -Intros X n H' H'0 x H'1 Y c2 H'2. -Elim H'2. -Intro H'3; Elim (not_SIncl_empty U (Add U X x)); Auto with sets arith. -Clear H'2 c2 Y. -Intros X0 c2 H'2 H'3 x0 H'4 H'5; Elim (classic (In U X0 x)). -Intro H'6; Apply gt_n_S. -Apply H'0 with Y := (Subtract U (Add U X0 x0) x). -ElimType (pred (S c2)) = c2; Auto with sets arith. -Apply card_soustr_1; Auto with sets arith. -Apply incl_st_add_soustr; Auto with sets arith. -Elim (classic x == x0). -Intros H'6 H'7; Apply gt_n_S. -Apply H'0 with Y := X0; Auto with sets arith. -Apply sincl_add_x with x := x0. -Rewrite <- H'6; Auto with sets arith. -Pattern 1 x0; Rewrite <- H'6; Trivial with sets arith. -Intros H'6 H'7; Red in H'5. -Elim H'5; Intros H'8 H'9; Try Exact H'8; Clear H'5. -Red in H'8. -Generalize (H'8 x). -Intro H'5; LApply H'5; Auto with sets arith. -Intro H; Elim Add_inv with U X0 x0 x; Auto with sets arith. -Intro; Absurd (In U X0 x); Auto with sets arith. -Intro; Absurd x==x0; Auto with sets arith. -Qed. - -Lemma incl_card_le: - (X,Y: (Ensemble U)) (n,m: nat) (cardinal U X n) -> (cardinal U Y m) -> - (Included U X Y) -> (le n m). -Proof. -Intros; -Elim Included_Strict_Included with U X Y; Auto with sets arith; Intro. -Cut (gt m n); Auto with sets arith. -Apply incl_st_card_lt with X := X Y := Y; Auto with sets arith. -Generalize H0; Rewrite <- H2; Intro. -Cut n=m. -Intro E; Rewrite E; Auto with sets arith. -Apply cardinal_unicity with X; Auto with sets arith. -Qed. - -Lemma G_aux: - (P:(Ensemble U) ->Prop) - ((X:(Ensemble U)) - (Finite U X) -> ((Y:(Ensemble U)) (Strict_Included U Y X) ->(P Y)) ->(P X)) -> - (P (Empty_set U)). -Proof. -Intros P H'; Try Assumption. -Apply H'; Auto with sets. -Clear H'; Auto with sets. -Intros Y H'; Try Assumption. -Red in H'. -Elim H'; Intros H'0 H'1; Try Exact H'1; Clear H'. -LApply (less_than_empty U Y); [Intro H'3; Try Exact H'3 | Assumption]. -Elim H'1; Auto with sets. -Qed. - -Hints Unfold not. - -Lemma Generalized_induction_on_finite_sets: - (P:(Ensemble U) ->Prop) - ((X:(Ensemble U)) - (Finite U X) -> ((Y:(Ensemble U)) (Strict_Included U Y X) ->(P Y)) ->(P X)) -> - (X:(Ensemble U)) (Finite U X) ->(P X). -Proof. -Intros P H'0 X H'1. -Generalize P H'0; Clear H'0 P. -Elim H'1. -Intros P H'0. -Apply G_aux; Auto with sets. -Clear H'1 X. -Intros A H' H'0 x H'1 P H'3. -Cut (Y:(Ensemble U)) (Included U Y (Add U A x)) ->(P Y); Auto with sets. -Generalize H'1. -Apply H'0. -Intros X K H'5 L Y H'6; Apply H'3; Auto with sets. -Apply Finite_downward_closed with A := (Add U X x); Auto with sets. -Intros Y0 H'7. -Elim (Strict_inclusion_is_transitive_with_inclusion U Y0 Y (Add U X x)); Auto with sets. -Intros H'2 H'4. -Elim (Included_Add U Y0 X x); - [Intro H'14 | - Intro H'14; Elim H'14; Intros A' E; Elim E; Intros H'15 H'16; Clear E H'14 | - Idtac]; Auto with sets. -Elim (Included_Strict_Included U Y0 X); Auto with sets. -Intro H'9; Apply H'5 with Y := Y0; Auto with sets. -Intro H'9; Rewrite H'9. -Apply H'3; Auto with sets. -Intros Y1 H'8; Elim H'8. -Intros H'10 H'11; Apply H'5 with Y := Y1; Auto with sets. -Elim (Included_Strict_Included U A' X); Auto with sets. -Intro H'8; Apply H'5 with Y := A'; Auto with sets. -Rewrite <- H'15; Auto with sets. -Intro H'8. -Elim H'7. -Intros H'9 H'10; Apply H'10 Orelse Elim H'10; Try Assumption. -Generalize H'6. -Rewrite <- H'8. -Rewrite <- H'15; Auto with sets. -Qed. - -End Finite_sets_facts. |