diff options
author | Samuel Mimram <smimram@debian.org> | 2006-04-28 14:59:16 +0000 |
---|---|---|
committer | Samuel Mimram <smimram@debian.org> | 2006-04-28 14:59:16 +0000 |
commit | 3ef7797ef6fc605dfafb32523261fe1b023aeecb (patch) | |
tree | ad89c6bb57ceee608fcba2bb3435b74e0f57919e /theories7/Relations/Operators_Properties.v | |
parent | 018ee3b0c2be79eb81b1f65c3f3fa142d24129c8 (diff) |
Imported Upstream version 8.0pl3+8.1alphaupstream/8.0pl3+8.1alpha
Diffstat (limited to 'theories7/Relations/Operators_Properties.v')
-rwxr-xr-x | theories7/Relations/Operators_Properties.v | 98 |
1 files changed, 0 insertions, 98 deletions
diff --git a/theories7/Relations/Operators_Properties.v b/theories7/Relations/Operators_Properties.v deleted file mode 100755 index 4f1818bc..00000000 --- a/theories7/Relations/Operators_Properties.v +++ /dev/null @@ -1,98 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -(*i $Id: Operators_Properties.v,v 1.1.2.1 2004/07/16 19:31:37 herbelin Exp $ i*) - -(****************************************************************************) -(* Bruno Barras *) -(****************************************************************************) - -Require Relation_Definitions. -Require Relation_Operators. - - -Section Properties. - - Variable A: Set. - Variable R: (relation A). - - Local incl : (relation A)->(relation A)->Prop := - [R1,R2: (relation A)] (x,y:A) (R1 x y) -> (R2 x y). - -Section Clos_Refl_Trans. - - Lemma clos_rt_is_preorder: (preorder A (clos_refl_trans A R)). -Apply Build_preorder. -Exact (rt_refl A R). - -Exact (rt_trans A R). -Qed. - - - -Lemma clos_rt_idempotent: - (incl (clos_refl_trans A (clos_refl_trans A R)) - (clos_refl_trans A R)). -Red. -NewInduction 1; Auto with sets. -Intros. -Apply rt_trans with y; Auto with sets. -Qed. - - Lemma clos_refl_trans_ind_left: (A:Set)(R:A->A->Prop)(M:A)(P:A->Prop) - (P M) - ->((P0,N:A) - (clos_refl_trans A R M P0)->(P P0)->(R P0 N)->(P N)) - ->(a:A)(clos_refl_trans A R M a)->(P a). -Intros. -Generalize H H0 . -Clear H H0. -Elim H1; Intros; Auto with sets. -Apply H2 with x; Auto with sets. - -Apply H3. -Apply H0; Auto with sets. - -Intros. -Apply H5 with P0; Auto with sets. -Apply rt_trans with y; Auto with sets. -Qed. - - -End Clos_Refl_Trans. - - -Section Clos_Refl_Sym_Trans. - - Lemma clos_rt_clos_rst: (inclusion A (clos_refl_trans A R) - (clos_refl_sym_trans A R)). -Red. -NewInduction 1; Auto with sets. -Apply rst_trans with y; Auto with sets. -Qed. - - Lemma clos_rst_is_equiv: (equivalence A (clos_refl_sym_trans A R)). -Apply Build_equivalence. -Exact (rst_refl A R). - -Exact (rst_trans A R). - -Exact (rst_sym A R). -Qed. - - Lemma clos_rst_idempotent: - (incl (clos_refl_sym_trans A (clos_refl_sym_trans A R)) - (clos_refl_sym_trans A R)). -Red. -NewInduction 1; Auto with sets. -Apply rst_trans with y; Auto with sets. -Qed. - -End Clos_Refl_Sym_Trans. - -End Properties. |