summaryrefslogtreecommitdiff
path: root/theories7/NArith/BinPos.v
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <samuel.mimram@ens-lyon.org>2004-07-28 21:54:47 +0000
committerGravatar Samuel Mimram <samuel.mimram@ens-lyon.org>2004-07-28 21:54:47 +0000
commit6b649aba925b6f7462da07599fe67ebb12a3460e (patch)
tree43656bcaa51164548f3fa14e5b10de5ef1088574 /theories7/NArith/BinPos.v
Imported Upstream version 8.0pl1upstream/8.0pl1
Diffstat (limited to 'theories7/NArith/BinPos.v')
-rw-r--r--theories7/NArith/BinPos.v894
1 files changed, 894 insertions, 0 deletions
diff --git a/theories7/NArith/BinPos.v b/theories7/NArith/BinPos.v
new file mode 100644
index 00000000..ae61587d
--- /dev/null
+++ b/theories7/NArith/BinPos.v
@@ -0,0 +1,894 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: BinPos.v,v 1.1.2.1 2004/07/16 19:31:31 herbelin Exp $ i*)
+
+(**********************************************************************)
+(** Binary positive numbers *)
+
+(** Original development by Pierre Crégut, CNET, Lannion, France *)
+
+Inductive positive : Set :=
+ xI : positive -> positive
+| xO : positive -> positive
+| xH : positive.
+
+(** Declare binding key for scope positive_scope *)
+
+Delimits Scope positive_scope with positive.
+
+(** Automatically open scope positive_scope for type positive, xO and xI *)
+
+Bind Scope positive_scope with positive.
+Arguments Scope xO [ positive_scope ].
+Arguments Scope xI [ positive_scope ].
+
+(** Successor *)
+
+Fixpoint add_un [x:positive]:positive :=
+ Cases x of
+ (xI x') => (xO (add_un x'))
+ | (xO x') => (xI x')
+ | xH => (xO xH)
+ end.
+
+(** Addition *)
+
+Fixpoint add [x:positive]:positive -> positive := [y:positive]
+ Cases x y of
+ | (xI x') (xI y') => (xO (add_carry x' y'))
+ | (xI x') (xO y') => (xI (add x' y'))
+ | (xI x') xH => (xO (add_un x'))
+ | (xO x') (xI y') => (xI (add x' y'))
+ | (xO x') (xO y') => (xO (add x' y'))
+ | (xO x') xH => (xI x')
+ | xH (xI y') => (xO (add_un y'))
+ | xH (xO y') => (xI y')
+ | xH xH => (xO xH)
+ end
+with add_carry [x:positive]:positive -> positive := [y:positive]
+ Cases x y of
+ | (xI x') (xI y') => (xI (add_carry x' y'))
+ | (xI x') (xO y') => (xO (add_carry x' y'))
+ | (xI x') xH => (xI (add_un x'))
+ | (xO x') (xI y') => (xO (add_carry x' y'))
+ | (xO x') (xO y') => (xI (add x' y'))
+ | (xO x') xH => (xO (add_un x'))
+ | xH (xI y') => (xI (add_un y'))
+ | xH (xO y') => (xO (add_un y'))
+ | xH xH => (xI xH)
+ end.
+
+V7only [Notation "x + y" := (add x y) : positive_scope.].
+V8Infix "+" add : positive_scope.
+
+Open Local Scope positive_scope.
+
+(** From binary positive numbers to Peano natural numbers *)
+
+Fixpoint positive_to_nat [x:positive]:nat -> nat :=
+ [pow2:nat]
+ Cases x of
+ (xI x') => (plus pow2 (positive_to_nat x' (plus pow2 pow2)))
+ | (xO x') => (positive_to_nat x' (plus pow2 pow2))
+ | xH => pow2
+ end.
+
+Definition convert := [x:positive] (positive_to_nat x (S O)).
+
+(** From Peano natural numbers to binary positive numbers *)
+
+Fixpoint anti_convert [n:nat]: positive :=
+ Cases n of
+ O => xH
+ | (S x') => (add_un (anti_convert x'))
+ end.
+
+(** Operation x -> 2*x-1 *)
+
+Fixpoint double_moins_un [x:positive]:positive :=
+ Cases x of
+ (xI x') => (xI (xO x'))
+ | (xO x') => (xI (double_moins_un x'))
+ | xH => xH
+ end.
+
+(** Predecessor *)
+
+Definition sub_un := [x:positive]
+ Cases x of
+ (xI x') => (xO x')
+ | (xO x') => (double_moins_un x')
+ | xH => xH
+ end.
+
+(** An auxiliary type for subtraction *)
+
+Inductive positive_mask: Set :=
+ IsNul : positive_mask
+ | IsPos : positive -> positive_mask
+ | IsNeg : positive_mask.
+
+(** Operation x -> 2*x+1 *)
+
+Definition Un_suivi_de_mask := [x:positive_mask]
+ Cases x of IsNul => (IsPos xH) | IsNeg => IsNeg | (IsPos p) => (IsPos (xI p)) end.
+
+(** Operation x -> 2*x *)
+
+Definition Zero_suivi_de_mask := [x:positive_mask]
+ Cases x of IsNul => IsNul | IsNeg => IsNeg | (IsPos p) => (IsPos (xO p)) end.
+
+(** Operation x -> 2*x-2 *)
+
+Definition double_moins_deux :=
+ [x:positive] Cases x of
+ (xI x') => (IsPos (xO (xO x')))
+ | (xO x') => (IsPos (xO (double_moins_un x')))
+ | xH => IsNul
+ end.
+
+(** Subtraction of binary positive numbers into a positive numbers mask *)
+
+Fixpoint sub_pos[x,y:positive]:positive_mask :=
+ Cases x y of
+ | (xI x') (xI y') => (Zero_suivi_de_mask (sub_pos x' y'))
+ | (xI x') (xO y') => (Un_suivi_de_mask (sub_pos x' y'))
+ | (xI x') xH => (IsPos (xO x'))
+ | (xO x') (xI y') => (Un_suivi_de_mask (sub_neg x' y'))
+ | (xO x') (xO y') => (Zero_suivi_de_mask (sub_pos x' y'))
+ | (xO x') xH => (IsPos (double_moins_un x'))
+ | xH xH => IsNul
+ | xH _ => IsNeg
+ end
+with sub_neg [x,y:positive]:positive_mask :=
+ Cases x y of
+ (xI x') (xI y') => (Un_suivi_de_mask (sub_neg x' y'))
+ | (xI x') (xO y') => (Zero_suivi_de_mask (sub_pos x' y'))
+ | (xI x') xH => (IsPos (double_moins_un x'))
+ | (xO x') (xI y') => (Zero_suivi_de_mask (sub_neg x' y'))
+ | (xO x') (xO y') => (Un_suivi_de_mask (sub_neg x' y'))
+ | (xO x') xH => (double_moins_deux x')
+ | xH _ => IsNeg
+ end.
+
+(** Subtraction of binary positive numbers x and y, returns 1 if x<=y *)
+
+Definition true_sub := [x,y:positive]
+ Cases (sub_pos x y) of (IsPos z) => z | _ => xH end.
+
+V8Infix "-" true_sub : positive_scope.
+
+(** Multiplication on binary positive numbers *)
+
+Fixpoint times [x:positive] : positive -> positive:=
+ [y:positive]
+ Cases x of
+ (xI x') => (add y (xO (times x' y)))
+ | (xO x') => (xO (times x' y))
+ | xH => y
+ end.
+
+V8Infix "*" times : positive_scope.
+
+(** Division by 2 rounded below but for 1 *)
+
+Definition Zdiv2_pos :=
+ [z:positive]Cases z of xH => xH
+ | (xO p) => p
+ | (xI p) => p
+ end.
+
+V8Infix "/" Zdiv2_pos : positive_scope.
+
+(** Comparison on binary positive numbers *)
+
+Fixpoint compare [x,y:positive]: relation -> relation :=
+ [r:relation]
+ Cases x y of
+ | (xI x') (xI y') => (compare x' y' r)
+ | (xI x') (xO y') => (compare x' y' SUPERIEUR)
+ | (xI x') xH => SUPERIEUR
+ | (xO x') (xI y') => (compare x' y' INFERIEUR)
+ | (xO x') (xO y') => (compare x' y' r)
+ | (xO x') xH => SUPERIEUR
+ | xH (xI y') => INFERIEUR
+ | xH (xO y') => INFERIEUR
+ | xH xH => r
+ end.
+
+V8Infix "?=" compare (at level 70, no associativity) : positive_scope.
+
+(**********************************************************************)
+(** Miscellaneous properties of binary positive numbers *)
+
+Lemma ZL11: (x:positive) (x=xH) \/ ~(x=xH).
+Proof.
+Intros x;Case x;Intros; (Left;Reflexivity) Orelse (Right;Discriminate).
+Qed.
+
+(**********************************************************************)
+(** Properties of successor on binary positive numbers *)
+
+(** Specification of [xI] in term of [Psucc] and [xO] *)
+
+Lemma xI_add_un_xO : (x:positive)(xI x) = (add_un (xO x)).
+Proof.
+Reflexivity.
+Qed.
+
+Lemma add_un_discr : (x:positive)x<>(add_un x).
+Proof.
+Intro x; NewDestruct x; Discriminate.
+Qed.
+
+(** Successor and double *)
+
+Lemma is_double_moins_un : (x:positive) (add_un (double_moins_un x)) = (xO x).
+Proof.
+Intro x; NewInduction x as [x IHx|x|]; Simpl; Try Rewrite IHx; Reflexivity.
+Qed.
+
+Lemma double_moins_un_add_un_xI :
+ (x:positive)(double_moins_un (add_un x))=(xI x).
+Proof.
+Intro x;NewInduction x as [x IHx|x|]; Simpl; Try Rewrite IHx; Reflexivity.
+Qed.
+
+Lemma ZL1: (y:positive)(xO (add_un y)) = (add_un (add_un (xO y))).
+Proof.
+Intro y; Induction y; Simpl; Auto.
+Qed.
+
+Lemma double_moins_un_xO_discr : (x:positive)(double_moins_un x)<>(xO x).
+Proof.
+Intro x; NewDestruct x; Discriminate.
+Qed.
+
+(** Successor and predecessor *)
+
+Lemma add_un_not_un : (x:positive) (add_un x) <> xH.
+Proof.
+Intro x; NewDestruct x as [x|x|]; Discriminate.
+Qed.
+
+Lemma sub_add_one : (x:positive) (sub_un (add_un x)) = x.
+Proof.
+(Intro x; NewDestruct x as [p|p|]; [Idtac | Idtac | Simpl;Auto]);
+(NewInduction p as [p IHp||]; [Idtac | Reflexivity | Reflexivity ]);
+Simpl; Simpl in IHp; Try Rewrite <- IHp; Reflexivity.
+Qed.
+
+Lemma add_sub_one : (x:positive) (x=xH) \/ (add_un (sub_un x)) = x.
+Proof.
+Intro x; Induction x; [
+ Simpl; Auto
+| Simpl; Intros;Right;Apply is_double_moins_un
+| Auto ].
+Qed.
+
+(** Injectivity of successor *)
+
+Lemma add_un_inj : (x,y:positive) (add_un x)=(add_un y) -> x=y.
+Proof.
+Intro x;NewInduction x; Intro y; NewDestruct y as [y|y|]; Simpl;
+ Intro H; Discriminate H Orelse Try (Injection H; Clear H; Intro H).
+Rewrite (IHx y H); Reflexivity.
+Absurd (add_un x)=xH; [ Apply add_un_not_un | Assumption ].
+Apply f_equal with 1:=H; Assumption.
+Absurd (add_un y)=xH; [ Apply add_un_not_un | Symmetry; Assumption ].
+Reflexivity.
+Qed.
+
+(**********************************************************************)
+(** Properties of addition on binary positive numbers *)
+
+(** Specification of [Psucc] in term of [Pplus] *)
+
+Lemma ZL12: (q:positive) (add_un q) = (add q xH).
+Proof.
+Intro q; NewDestruct q; Reflexivity.
+Qed.
+
+Lemma ZL12bis: (q:positive) (add_un q) = (add xH q).
+Proof.
+Intro q; NewDestruct q; Reflexivity.
+Qed.
+
+(** Specification of [Pplus_carry] *)
+
+Theorem ZL13: (x,y:positive)(add_carry x y) = (add_un (add x y)).
+Proof.
+(Intro x; NewInduction x as [p IHp|p IHp|];Intro y; NewDestruct y;Simpl;Auto);
+ Rewrite IHp; Auto.
+Qed.
+
+(** Commutativity *)
+
+Theorem add_sym : (x,y:positive) (add x y) = (add y x).
+Proof.
+Intro x; NewInduction x as [p IHp|p IHp|];Intro y; NewDestruct y;Simpl;Auto;
+ Try Do 2 Rewrite ZL13; Rewrite IHp;Auto.
+Qed.
+
+(** Permutation of [Pplus] and [Psucc] *)
+
+Theorem ZL14: (x,y:positive)(add x (add_un y)) = (add_un (add x y)).
+Proof.
+Intro x; NewInduction x as [p IHp|p IHp|];Intro y; NewDestruct y;Simpl;Auto; [
+ Rewrite ZL13; Rewrite IHp; Auto
+| Rewrite ZL13; Auto
+| NewDestruct p;Simpl;Auto
+| Rewrite IHp;Auto
+| NewDestruct p;Simpl;Auto ].
+Qed.
+
+Theorem ZL14bis: (x,y:positive)(add (add_un x) y) = (add_un (add x y)).
+Proof.
+Intros x y; Rewrite add_sym; Rewrite add_sym with x:=x; Apply ZL14.
+Qed.
+
+Theorem ZL15: (q,z:positive) ~z=xH -> (add_carry q (sub_un z)) = (add q z).
+Proof.
+Intros q z H; Elim (add_sub_one z); [
+ Intro;Absurd z=xH;Auto
+| Intros E;Pattern 2 z ;Rewrite <- E; Rewrite ZL14; Rewrite ZL13; Trivial ].
+Qed.
+
+(** No neutral for addition on strictly positive numbers *)
+
+Lemma add_no_neutral : (x,y:positive) ~(add y x)=x.
+Proof.
+Intro x;NewInduction x; Intro y; NewDestruct y as [y|y|]; Simpl; Intro H;
+ Discriminate H Orelse Injection H; Clear H; Intro H; Apply (IHx y H).
+Qed.
+
+Lemma add_carry_not_add_un : (x,y:positive) ~(add_carry y x)=(add_un x).
+Proof.
+Intros x y H; Absurd (add y x)=x;
+ [ Apply add_no_neutral
+ | Apply add_un_inj; Rewrite <- ZL13; Assumption ].
+Qed.
+
+(** Simplification *)
+
+Lemma add_carry_add :
+ (x,y,z,t:positive) (add_carry x z)=(add_carry y t) -> (add x z)=(add y t).
+Proof.
+Intros x y z t H; Apply add_un_inj; Do 2 Rewrite <- ZL13; Assumption.
+Qed.
+
+Lemma simpl_add_r : (x,y,z:positive) (add x z)=(add y z) -> x=y.
+Proof.
+Intros x y z; Generalize x y; Clear x y.
+NewInduction z as [z|z|].
+ NewDestruct x as [x|x|]; Intro y; NewDestruct y as [y|y|]; Simpl; Intro H;
+ Discriminate H Orelse Try (Injection H; Clear H; Intro H).
+ Rewrite IHz with 1:=(add_carry_add ? ? ? ? H); Reflexivity.
+ Absurd (add_carry x z)=(add_un z);
+ [ Apply add_carry_not_add_un | Assumption ].
+ Rewrite IHz with 1:=H; Reflexivity.
+ Symmetry in H; Absurd (add_carry y z)=(add_un z);
+ [ Apply add_carry_not_add_un | Assumption ].
+ Reflexivity.
+ NewDestruct x as [x|x|]; Intro y; NewDestruct y as [y|y|]; Simpl; Intro H;
+ Discriminate H Orelse Try (Injection H; Clear H; Intro H).
+ Rewrite IHz with 1:=H; Reflexivity.
+ Absurd (add x z)=z; [ Apply add_no_neutral | Assumption ].
+ Rewrite IHz with 1:=H; Reflexivity.
+ Symmetry in H; Absurd y+z=z; [ Apply add_no_neutral | Assumption ].
+ Reflexivity.
+ Intros H x y; Apply add_un_inj; Do 2 Rewrite ZL12; Assumption.
+Qed.
+
+Lemma simpl_add_l : (x,y,z:positive) (add x y)=(add x z) -> y=z.
+Proof.
+Intros x y z H;Apply simpl_add_r with z:=x;
+ Rewrite add_sym with x:=z; Rewrite add_sym with x:=y; Assumption.
+Qed.
+
+Lemma simpl_add_carry_r :
+ (x,y,z:positive) (add_carry x z)=(add_carry y z) -> x=y.
+Proof.
+Intros x y z H; Apply simpl_add_r with z:=z; Apply add_carry_add; Assumption.
+Qed.
+
+Lemma simpl_add_carry_l :
+ (x,y,z:positive) (add_carry x y)=(add_carry x z) -> y=z.
+Proof.
+Intros x y z H;Apply simpl_add_r with z:=x;
+Rewrite add_sym with x:=z; Rewrite add_sym with x:=y; Apply add_carry_add;
+Assumption.
+Qed.
+
+(** Addition on positive is associative *)
+
+Theorem add_assoc: (x,y,z:positive)(add x (add y z)) = (add (add x y) z).
+Proof.
+Intros x y; Generalize x; Clear x.
+NewInduction y as [y|y|]; Intro x.
+ NewDestruct x as [x|x|];
+ Intro z; NewDestruct z as [z|z|]; Simpl; Repeat Rewrite ZL13;
+ Repeat Rewrite ZL14; Repeat Rewrite ZL14bis; Reflexivity Orelse
+ Repeat Apply f_equal with A:=positive; Apply IHy.
+ NewDestruct x as [x|x|];
+ Intro z; NewDestruct z as [z|z|]; Simpl; Repeat Rewrite ZL13;
+ Repeat Rewrite ZL14; Repeat Rewrite ZL14bis; Reflexivity Orelse
+ Repeat Apply f_equal with A:=positive; Apply IHy.
+ Intro z; Rewrite add_sym with x:=xH; Do 2 Rewrite <- ZL12; Rewrite ZL14bis; Rewrite ZL14; Reflexivity.
+Qed.
+
+(** Commutation of addition with the double of a positive number *)
+
+Lemma add_xI_double_moins_un :
+ (p,q:positive)(xO (add p q)) = (add (xI p) (double_moins_un q)).
+Proof.
+Intros; Change (xI p) with (add (xO p) xH).
+Rewrite <- add_assoc; Rewrite <- ZL12bis; Rewrite is_double_moins_un.
+Reflexivity.
+Qed.
+
+Lemma add_xO_double_moins_un :
+ (p,q:positive) (double_moins_un (add p q)) = (add (xO p) (double_moins_un q)).
+Proof.
+NewInduction p as [p IHp|p IHp|]; NewDestruct q as [q|q|];
+ Simpl; Try Rewrite ZL13; Try Rewrite double_moins_un_add_un_xI;
+ Try Rewrite IHp; Try Rewrite add_xI_double_moins_un; Try Reflexivity.
+ Rewrite <- is_double_moins_un; Rewrite ZL12bis; Reflexivity.
+Qed.
+
+(** Misc *)
+
+Lemma add_x_x : (x:positive) (add x x) = (xO x).
+Proof.
+Intro x;NewInduction x; Simpl; Try Rewrite ZL13; Try Rewrite IHx; Reflexivity.
+Qed.
+
+(**********************************************************************)
+(** Peano induction on binary positive positive numbers *)
+
+Fixpoint plus_iter [x:positive] : positive -> positive :=
+ [y]Cases x of
+ | xH => (add_un y)
+ | (xO x) => (plus_iter x (plus_iter x y))
+ | (xI x) => (plus_iter x (plus_iter x (add_un y)))
+ end.
+
+Lemma plus_iter_add : (x,y:positive)(plus_iter x y)=(add x y).
+Proof.
+Intro x;NewInduction x as [p IHp|p IHp|]; Intro y; NewDestruct y; Simpl;
+ Reflexivity Orelse Do 2 Rewrite IHp; Rewrite add_assoc; Rewrite add_x_x;
+ Try Reflexivity.
+Rewrite ZL13; Rewrite <- ZL14; Reflexivity.
+Rewrite ZL12; Reflexivity.
+Qed.
+
+Lemma plus_iter_xO : (x:positive)(plus_iter x x)=(xO x).
+Proof.
+Intro; Rewrite <- add_x_x; Apply plus_iter_add.
+Qed.
+
+Lemma plus_iter_xI : (x:positive)(add_un (plus_iter x x))=(xI x).
+Proof.
+Intro; Rewrite xI_add_un_xO; Rewrite <- add_x_x;
+ Apply (f_equal positive); Apply plus_iter_add.
+Qed.
+
+Lemma iterate_add : (P:(positive->Type))
+ ((n:positive)(P n) ->(P (add_un n)))->(p,n:positive)(P n) ->
+ (P (plus_iter p n)).
+Proof.
+Intros P H; NewInduction p; Simpl; Intros.
+Apply IHp; Apply IHp; Apply H; Assumption.
+Apply IHp; Apply IHp; Assumption.
+Apply H; Assumption.
+Defined.
+
+(** Peano induction *)
+
+Theorem Pind : (P:(positive->Prop))
+ (P xH) ->((n:positive)(P n) ->(P (add_un n))) ->(n:positive)(P n).
+Proof.
+Intros P H1 Hsucc n; NewInduction n.
+Rewrite <- plus_iter_xI; Apply Hsucc; Apply iterate_add; Assumption.
+Rewrite <- plus_iter_xO; Apply iterate_add; Assumption.
+Assumption.
+Qed.
+
+(** Peano recursion *)
+
+Definition Prec : (A:Set)A->(positive->A->A)->positive->A :=
+ [A;a;f]Fix Prec { Prec [p:positive] : A :=
+ Cases p of
+ | xH => a
+ | (xO p) => (iterate_add [_]A f p p (Prec p))
+ | (xI p) => (f (plus_iter p p) (iterate_add [_]A f p p (Prec p)))
+ end}.
+
+(** Peano case analysis *)
+
+Theorem Pcase : (P:(positive->Prop))
+ (P xH) ->((n:positive)(P (add_un n))) ->(n:positive)(P n).
+Proof.
+Intros; Apply Pind; Auto.
+Qed.
+
+Check
+ let fact = (Prec positive xH [p;r](times (add_un p) r)) in
+ let seven = (xI (xI xH)) in
+ let five_thousand_forty= (xO(xO(xO(xO(xI(xI(xO(xI(xI(xI(xO(xO xH))))))))))))
+ in ((refl_equal ? ?) :: (fact seven) = five_thousand_forty).
+
+(**********************************************************************)
+(** Properties of multiplication on binary positive numbers *)
+
+(** One is right neutral for multiplication *)
+
+Lemma times_x_1 : (x:positive) (times x xH) = x.
+Proof.
+Intro x;NewInduction x; Simpl.
+ Rewrite IHx; Reflexivity.
+ Rewrite IHx; Reflexivity.
+ Reflexivity.
+Qed.
+
+(** Right reduction properties for multiplication *)
+
+Lemma times_x_double : (x,y:positive) (times x (xO y)) = (xO (times x y)).
+Proof.
+Intros x y; NewInduction x; Simpl.
+ Rewrite IHx; Reflexivity.
+ Rewrite IHx; Reflexivity.
+ Reflexivity.
+Qed.
+
+Lemma times_x_double_plus_one :
+ (x,y:positive) (times x (xI y)) = (add x (xO (times x y))).
+Proof.
+Intros x y; NewInduction x; Simpl.
+ Rewrite IHx; Do 2 Rewrite add_assoc; Rewrite add_sym with x:=y; Reflexivity.
+ Rewrite IHx; Reflexivity.
+ Reflexivity.
+Qed.
+
+(** Commutativity of multiplication *)
+
+Theorem times_sym : (x,y:positive) (times x y) = (times y x).
+Proof.
+Intros x y; NewInduction y; Simpl.
+ Rewrite <- IHy; Apply times_x_double_plus_one.
+ Rewrite <- IHy; Apply times_x_double.
+ Apply times_x_1.
+Qed.
+
+(** Distributivity of multiplication over addition *)
+
+Theorem times_add_distr:
+ (x,y,z:positive) (times x (add y z)) = (add (times x y) (times x z)).
+Proof.
+Intros x y z; NewInduction x; Simpl.
+ Rewrite IHx; Rewrite <- add_assoc with y := (xO (times x y));
+ Rewrite -> add_assoc with x := (xO (times x y));
+ Rewrite -> add_sym with x := (xO (times x y));
+ Rewrite <- add_assoc with y := (xO (times x y));
+ Rewrite -> add_assoc with y := z; Reflexivity.
+ Rewrite IHx; Reflexivity.
+ Reflexivity.
+Qed.
+
+Theorem times_add_distr_l:
+ (x,y,z:positive) (times (add x y) z) = (add (times x z) (times y z)).
+Proof.
+Intros x y z; Do 3 Rewrite times_sym with y:=z; Apply times_add_distr.
+Qed.
+
+(** Associativity of multiplication *)
+
+Theorem times_assoc :
+ ((x,y,z:positive) (times x (times y z))= (times (times x y) z)).
+Proof.
+Intro x;NewInduction x as [x|x|]; Simpl; Intros y z.
+ Rewrite IHx; Rewrite times_add_distr_l; Reflexivity.
+ Rewrite IHx; Reflexivity.
+ Reflexivity.
+Qed.
+
+(** Parity properties of multiplication *)
+
+Lemma times_discr_xO_xI :
+ (x,y,z:positive)(times (xI x) z)<>(times (xO y) z).
+Proof.
+Intros x y z; NewInduction z as [|z IHz|]; Try Discriminate.
+Intro H; Apply IHz; Clear IHz.
+Do 2 Rewrite times_x_double in H.
+Injection H; Clear H; Intro H; Exact H.
+Qed.
+
+Lemma times_discr_xO : (x,y:positive)(times (xO x) y)<>y.
+Proof.
+Intros x y; NewInduction y; Try Discriminate.
+Rewrite times_x_double; Injection; Assumption.
+Qed.
+
+(** Simplification properties of multiplication *)
+
+Theorem simpl_times_r : (x,y,z:positive) (times x z)=(times y z) -> x=y.
+Proof.
+Intro x;NewInduction x as [p IHp|p IHp|]; Intro y; NewDestruct y as [q|q|]; Intros z H;
+ Reflexivity Orelse Apply (f_equal positive) Orelse Apply False_ind.
+ Simpl in H; Apply IHp with (xO z); Simpl; Do 2 Rewrite times_x_double;
+ Apply simpl_add_l with 1 := H.
+ Apply times_discr_xO_xI with 1 := H.
+ Simpl in H; Rewrite add_sym in H; Apply add_no_neutral with 1 := H.
+ Symmetry in H; Apply times_discr_xO_xI with 1 := H.
+ Apply IHp with (xO z); Simpl; Do 2 Rewrite times_x_double; Assumption.
+ Apply times_discr_xO with 1:=H.
+ Simpl in H; Symmetry in H; Rewrite add_sym in H;
+ Apply add_no_neutral with 1 := H.
+ Symmetry in H; Apply times_discr_xO with 1:=H.
+Qed.
+
+Theorem simpl_times_l : (x,y,z:positive) (times z x)=(times z y) -> x=y.
+Proof.
+Intros x y z H; Apply simpl_times_r with z:=z.
+Rewrite times_sym with x:=x; Rewrite times_sym with x:=y; Assumption.
+Qed.
+
+(** Inversion of multiplication *)
+
+Lemma times_one_inversion_l : (x,y:positive) (times x y)=xH -> x=xH.
+Proof.
+Intros x y; NewDestruct x; Simpl.
+ NewDestruct y; Intro; Discriminate.
+ Intro; Discriminate.
+ Reflexivity.
+Qed.
+
+(**********************************************************************)
+(** Properties of comparison on binary positive numbers *)
+
+Theorem compare_convert1 :
+ (x,y:positive)
+ ~(compare x y SUPERIEUR) = EGAL /\ ~(compare x y INFERIEUR) = EGAL.
+Proof.
+Intro x; NewInduction x as [p IHp|p IHp|]; Intro y; NewDestruct y as [q|q|];
+ Split;Simpl;Auto;
+ Discriminate Orelse (Elim (IHp q); Auto).
+Qed.
+
+Theorem compare_convert_EGAL : (x,y:positive) (compare x y EGAL) = EGAL -> x=y.
+Proof.
+Intro x; NewInduction x as [p IHp|p IHp|];
+ Intro y; NewDestruct y as [q|q|];Simpl;Auto; Intro H; [
+ Rewrite (IHp q); Trivial
+| Absurd (compare p q SUPERIEUR)=EGAL ;
+ [ Elim (compare_convert1 p q);Auto | Assumption ]
+| Discriminate H
+| Absurd (compare p q INFERIEUR) = EGAL;
+ [ Elim (compare_convert1 p q);Auto | Assumption ]
+| Rewrite (IHp q);Auto
+| Discriminate H
+| Discriminate H
+| Discriminate H ].
+Qed.
+
+Lemma ZLSI:
+ (x,y:positive) (compare x y SUPERIEUR) = INFERIEUR ->
+ (compare x y EGAL) = INFERIEUR.
+Proof.
+Intro x; Induction x;Intro y; Induction y;Simpl;Auto;
+ Discriminate Orelse Intros H;Discriminate H.
+Qed.
+
+Lemma ZLIS:
+ (x,y:positive) (compare x y INFERIEUR) = SUPERIEUR ->
+ (compare x y EGAL) = SUPERIEUR.
+Proof.
+Intro x; Induction x;Intro y; Induction y;Simpl;Auto;
+ Discriminate Orelse Intros H;Discriminate H.
+Qed.
+
+Lemma ZLII:
+ (x,y:positive) (compare x y INFERIEUR) = INFERIEUR ->
+ (compare x y EGAL) = INFERIEUR \/ x = y.
+Proof.
+(Intro x; NewInduction x as [p IHp|p IHp|];
+ Intro y; NewDestruct y as [q|q|];Simpl;Auto;Try Discriminate);
+ Intro H2; Elim (IHp q H2);Auto; Intros E;Rewrite E;
+ Auto.
+Qed.
+
+Lemma ZLSS:
+ (x,y:positive) (compare x y SUPERIEUR) = SUPERIEUR ->
+ (compare x y EGAL) = SUPERIEUR \/ x = y.
+Proof.
+(Intro x; NewInduction x as [p IHp|p IHp|];
+ Intro y; NewDestruct y as [q|q|];Simpl;Auto;Try Discriminate);
+ Intro H2; Elim (IHp q H2);Auto; Intros E;Rewrite E;
+ Auto.
+Qed.
+
+Lemma Dcompare : (r:relation) r=EGAL \/ r = INFERIEUR \/ r = SUPERIEUR.
+Proof.
+Induction r; Auto.
+Qed.
+
+Tactic Definition ElimPcompare c1 c2:=
+ Elim (Dcompare (compare c1 c2 EGAL)); [ Idtac |
+ Let x = FreshId "H" In Intro x; Case x; Clear x ].
+
+Theorem convert_compare_EGAL: (x:positive)(compare x x EGAL)=EGAL.
+Intro x; Induction x; Auto.
+Qed.
+
+Lemma Pcompare_antisym :
+ (x,y:positive)(r:relation) (Op (compare x y r)) = (compare y x (Op r)).
+Proof.
+Intro x; NewInduction x as [p IHp|p IHp|]; Intro y; NewDestruct y;
+Intro r; Reflexivity Orelse (Symmetry; Assumption) Orelse Discriminate H
+Orelse Simpl; Apply IHp Orelse Try Rewrite IHp; Try Reflexivity.
+Qed.
+
+Lemma ZC1:
+ (x,y:positive)(compare x y EGAL)=SUPERIEUR -> (compare y x EGAL)=INFERIEUR.
+Proof.
+Intros; Change EGAL with (Op EGAL).
+Rewrite <- Pcompare_antisym; Rewrite H; Reflexivity.
+Qed.
+
+Lemma ZC2:
+ (x,y:positive)(compare x y EGAL)=INFERIEUR -> (compare y x EGAL)=SUPERIEUR.
+Proof.
+Intros; Change EGAL with (Op EGAL).
+Rewrite <- Pcompare_antisym; Rewrite H; Reflexivity.
+Qed.
+
+Lemma ZC3: (x,y:positive)(compare x y EGAL)=EGAL -> (compare y x EGAL)=EGAL.
+Proof.
+Intros; Change EGAL with (Op EGAL).
+Rewrite <- Pcompare_antisym; Rewrite H; Reflexivity.
+Qed.
+
+Lemma ZC4: (x,y:positive) (compare x y EGAL) = (Op (compare y x EGAL)).
+Proof.
+Intros; Change 1 EGAL with (Op EGAL).
+Symmetry; Apply Pcompare_antisym.
+Qed.
+
+(**********************************************************************)
+(** Properties of subtraction on binary positive numbers *)
+
+Lemma ZS: (p:positive_mask) (Zero_suivi_de_mask p) = IsNul -> p = IsNul.
+Proof.
+NewDestruct p; Simpl; [ Trivial | Discriminate 1 | Discriminate 1 ].
+Qed.
+
+Lemma US: (p:positive_mask) ~(Un_suivi_de_mask p)=IsNul.
+Proof.
+Induction p; Intros; Discriminate.
+Qed.
+
+Lemma USH: (p:positive_mask) (Un_suivi_de_mask p) = (IsPos xH) -> p = IsNul.
+Proof.
+NewDestruct p; Simpl; [ Trivial | Discriminate 1 | Discriminate 1 ].
+Qed.
+
+Lemma ZSH: (p:positive_mask) ~(Zero_suivi_de_mask p)= (IsPos xH).
+Proof.
+Induction p; Intros; Discriminate.
+Qed.
+
+Theorem sub_pos_x_x : (x:positive) (sub_pos x x) = IsNul.
+Proof.
+Intro x; NewInduction x as [p IHp|p IHp|]; [
+ Simpl; Rewrite IHp;Simpl; Trivial
+| Simpl; Rewrite IHp;Auto
+| Auto ].
+Qed.
+
+Lemma ZL10: (x,y:positive)
+ (sub_pos x y) = (IsPos xH) -> (sub_neg x y) = IsNul.
+Proof.
+Intro x; NewInduction x as [p|p|]; Intro y; NewDestruct y as [q|q|]; Simpl;
+ Intro H; Try Discriminate H; [
+ Absurd (Zero_suivi_de_mask (sub_pos p q))=(IsPos xH);
+ [ Apply ZSH | Assumption ]
+| Assert Heq : (sub_pos p q)=IsNul;
+ [ Apply USH;Assumption | Rewrite Heq; Reflexivity ]
+| Assert Heq : (sub_neg p q)=IsNul;
+ [ Apply USH;Assumption | Rewrite Heq; Reflexivity ]
+| Absurd (Zero_suivi_de_mask (sub_pos p q))=(IsPos xH);
+ [ Apply ZSH | Assumption ]
+| NewDestruct p; Simpl; [ Discriminate H | Discriminate H | Reflexivity ] ].
+Qed.
+
+(** Properties of subtraction valid only for x>y *)
+
+Lemma sub_pos_SUPERIEUR:
+ (x,y:positive)(compare x y EGAL)=SUPERIEUR ->
+ (EX h:positive | (sub_pos x y) = (IsPos h) /\ (add y h) = x /\
+ (h = xH \/ (sub_neg x y) = (IsPos (sub_un h)))).
+Proof.
+Intro x;NewInduction x as [p|p|];Intro y; NewDestruct y as [q|q|]; Simpl; Intro H;
+ Try Discriminate H.
+ NewDestruct (IHp q H) as [z [H4 [H6 H7]]]; Exists (xO z); Split.
+ Rewrite H4; Reflexivity.
+ Split.
+ Simpl; Rewrite H6; Reflexivity.
+ Right; Clear H6; NewDestruct (ZL11 z) as [H8|H8]; [
+ Rewrite H8; Rewrite H8 in H4;
+ Rewrite ZL10; [ Reflexivity | Assumption ]
+ | Clear H4; NewDestruct H7 as [H9|H9]; [
+ Absurd z=xH; Assumption
+ | Rewrite H9; Clear H9; NewDestruct z;
+ [ Reflexivity | Reflexivity | Absurd xH=xH; Trivial ]]].
+ Case ZLSS with 1:=H; [
+ Intros H3;Elim (IHp q H3); Intros z H4; Exists (xI z);
+ Elim H4;Intros H5 H6;Elim H6;Intros H7 H8; Split; [
+ Simpl;Rewrite H5;Auto
+ | Split; [
+ Simpl; Rewrite H7; Trivial
+ | Right;
+ Change (Zero_suivi_de_mask (sub_pos p q))=(IsPos (sub_un (xI z)));
+ Rewrite H5; Auto ]]
+ | Intros H3; Exists xH; Rewrite H3; Split; [
+ Simpl; Rewrite sub_pos_x_x; Auto
+ | Split; Auto ]].
+ Exists (xO p); Auto.
+ NewDestruct (IHp q) as [z [H4 [H6 H7]]].
+ Apply ZLIS; Assumption.
+ NewDestruct (ZL11 z) as [vZ|]; [
+ Exists xH; Split; [
+ Rewrite ZL10; [ Reflexivity | Rewrite vZ in H4;Assumption ]
+ | Split; [
+ Simpl; Rewrite ZL12; Rewrite <- vZ; Rewrite H6; Trivial
+ | Auto ]]
+ | Exists (xI (sub_un z)); NewDestruct H7 as [|H8];[
+ Absurd z=xH;Assumption
+ | Split; [
+ Rewrite H8; Trivial
+ | Split; [ Simpl; Rewrite ZL15; [
+ Rewrite H6;Trivial
+ | Assumption ]
+ | Right; Rewrite H8; Reflexivity]]]].
+ NewDestruct (IHp q H) as [z [H4 [H6 H7]]].
+ Exists (xO z); Split; [
+ Rewrite H4;Auto
+ | Split; [
+ Simpl;Rewrite H6;Reflexivity
+ | Right;
+ Change (Un_suivi_de_mask (sub_neg p q))=(IsPos (double_moins_un z));
+ NewDestruct (ZL11 z) as [H8|H8]; [
+ Rewrite H8; Simpl;
+ Assert H9:(sub_neg p q)=IsNul;[
+ Apply ZL10;Rewrite <- H8;Assumption
+ | Rewrite H9;Reflexivity ]
+ | NewDestruct H7 as [H9|H9]; [
+ Absurd z=xH;Auto
+ | Rewrite H9; NewDestruct z; Simpl;
+ [ Reflexivity
+ | Reflexivity
+ | Absurd xH=xH; [Assumption | Reflexivity]]]]]].
+ Exists (double_moins_un p); Split; [
+ Reflexivity
+ | Clear IHp; Split; [
+ NewDestruct p; Simpl; [
+ Reflexivity
+ | Rewrite is_double_moins_un; Reflexivity
+ | Reflexivity ]
+ | NewDestruct p; [Right|Right|Left]; Reflexivity ]].
+Qed.
+
+Theorem sub_add:
+(x,y:positive) (compare x y EGAL) = SUPERIEUR -> (add y (true_sub x y)) = x.
+Proof.
+Intros x y H;Elim sub_pos_SUPERIEUR with 1:=H;
+Intros z H1;Elim H1;Intros H2 H3; Elim H3;Intros H4 H5;
+Unfold true_sub ;Rewrite H2; Exact H4.
+Qed.
+