diff options
author | Samuel Mimram <samuel.mimram@ens-lyon.org> | 2004-07-28 21:54:47 +0000 |
---|---|---|
committer | Samuel Mimram <samuel.mimram@ens-lyon.org> | 2004-07-28 21:54:47 +0000 |
commit | 6b649aba925b6f7462da07599fe67ebb12a3460e (patch) | |
tree | 43656bcaa51164548f3fa14e5b10de5ef1088574 /theories7/Lists/ListSet.v |
Imported Upstream version 8.0pl1upstream/8.0pl1
Diffstat (limited to 'theories7/Lists/ListSet.v')
-rw-r--r-- | theories7/Lists/ListSet.v | 389 |
1 files changed, 389 insertions, 0 deletions
diff --git a/theories7/Lists/ListSet.v b/theories7/Lists/ListSet.v new file mode 100644 index 00000000..9bf259da --- /dev/null +++ b/theories7/Lists/ListSet.v @@ -0,0 +1,389 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: ListSet.v,v 1.1.2.1 2004/07/16 19:31:28 herbelin Exp $ i*) + +(** A Library for finite sets, implemented as lists + A Library with similar interface will soon be available under + the name TreeSet in the theories/Trees directory *) + +(** PolyList is loaded, but not exported. + This allow to "hide" the definitions, functions and theorems of PolyList + and to see only the ones of ListSet *) + +Require PolyList. + +Set Implicit Arguments. +V7only [Implicits nil [1].]. + +Section first_definitions. + + Variable A : Set. + Hypothesis Aeq_dec : (x,y:A){x=y}+{~x=y}. + + Definition set := (list A). + + Definition empty_set := (!nil ?) : set. + + Fixpoint set_add [a:A; x:set] : set := + Cases x of + | nil => (cons a nil) + | (cons a1 x1) => Cases (Aeq_dec a a1) of + | (left _) => (cons a1 x1) + | (right _) => (cons a1 (set_add a x1)) + end + end. + + + Fixpoint set_mem [a:A; x:set] : bool := + Cases x of + | nil => false + | (cons a1 x1) => Cases (Aeq_dec a a1) of + | (left _) => true + | (right _) => (set_mem a x1) + end + end. + + (** If [a] belongs to [x], removes [a] from [x]. If not, does nothing *) + Fixpoint set_remove [a:A; x:set] : set := + Cases x of + | nil => empty_set + | (cons a1 x1) => Cases (Aeq_dec a a1) of + | (left _) => x1 + | (right _) => (cons a1 (set_remove a x1)) + end + end. + + Fixpoint set_inter [x:set] : set -> set := + Cases x of + | nil => [y]nil + | (cons a1 x1) => [y]if (set_mem a1 y) + then (cons a1 (set_inter x1 y)) + else (set_inter x1 y) + end. + + Fixpoint set_union [x,y:set] : set := + Cases y of + | nil => x + | (cons a1 y1) => (set_add a1 (set_union x y1)) + end. + + (** returns the set of all els of [x] that does not belong to [y] *) + Fixpoint set_diff [x:set] : set -> set := + [y]Cases x of + | nil => nil + | (cons a1 x1) => if (set_mem a1 y) + then (set_diff x1 y) + else (set_add a1 (set_diff x1 y)) + end. + + + Definition set_In : A -> set -> Prop := (In 1!A). + + Lemma set_In_dec : (a:A; x:set){(set_In a x)}+{~(set_In a x)}. + + Proof. + Unfold set_In. + (*** Realizer set_mem. Program_all. ***) + Induction x. + Auto. + Intros a0 x0 Ha0. Case (Aeq_dec a a0); Intro eq. + Rewrite eq; Simpl; Auto with datatypes. + Elim Ha0. + Auto with datatypes. + Right; Simpl; Unfold not; Intros [Hc1 | Hc2 ]; Auto with datatypes. + Qed. + + Lemma set_mem_ind : + (B:Set)(P:B->Prop)(y,z:B)(a:A)(x:set) + ((set_In a x) -> (P y)) + ->(P z) + ->(P (if (set_mem a x) then y else z)). + + Proof. + Induction x; Simpl; Intros. + Assumption. + Elim (Aeq_dec a a0); Auto with datatypes. + Qed. + + Lemma set_mem_ind2 : + (B:Set)(P:B->Prop)(y,z:B)(a:A)(x:set) + ((set_In a x) -> (P y)) + ->(~(set_In a x) -> (P z)) + ->(P (if (set_mem a x) then y else z)). + + Proof. + Induction x; Simpl; Intros. + Apply H0; Red; Trivial. + Case (Aeq_dec a a0); Auto with datatypes. + Intro; Apply H; Intros; Auto. + Apply H1; Red; Intro. + Case H3; Auto. + Qed. + + + Lemma set_mem_correct1 : + (a:A)(x:set)(set_mem a x)=true -> (set_In a x). + Proof. + Induction x; Simpl. + Discriminate. + Intros a0 l; Elim (Aeq_dec a a0); Auto with datatypes. + Qed. + + Lemma set_mem_correct2 : + (a:A)(x:set)(set_In a x) -> (set_mem a x)=true. + Proof. + Induction x; Simpl. + Intro Ha; Elim Ha. + Intros a0 l; Elim (Aeq_dec a a0); Auto with datatypes. + Intros H1 H2 [H3 | H4]. + Absurd a0=a; Auto with datatypes. + Auto with datatypes. + Qed. + + Lemma set_mem_complete1 : + (a:A)(x:set)(set_mem a x)=false -> ~(set_In a x). + Proof. + Induction x; Simpl. + Tauto. + Intros a0 l; Elim (Aeq_dec a a0). + Intros; Discriminate H0. + Unfold not; Intros; Elim H1; Auto with datatypes. + Qed. + + Lemma set_mem_complete2 : + (a:A)(x:set)~(set_In a x) -> (set_mem a x)=false. + Proof. + Induction x; Simpl. + Tauto. + Intros a0 l; Elim (Aeq_dec a a0). + Intros; Elim H0; Auto with datatypes. + Tauto. + Qed. + + Lemma set_add_intro1 : (a,b:A)(x:set) + (set_In a x) -> (set_In a (set_add b x)). + + Proof. + Unfold set_In; Induction x; Simpl. + Auto with datatypes. + Intros a0 l H [ Ha0a | Hal ]. + Elim (Aeq_dec b a0); Left; Assumption. + Elim (Aeq_dec b a0); Right; [ Assumption | Auto with datatypes ]. + Qed. + + Lemma set_add_intro2 : (a,b:A)(x:set) + a=b -> (set_In a (set_add b x)). + + Proof. + Unfold set_In; Induction x; Simpl. + Auto with datatypes. + Intros a0 l H Hab. + Elim (Aeq_dec b a0); + [ Rewrite Hab; Intro Hba0; Rewrite Hba0; Simpl; Auto with datatypes + | Auto with datatypes ]. + Qed. + + Hints Resolve set_add_intro1 set_add_intro2. + + Lemma set_add_intro : (a,b:A)(x:set) + a=b\/(set_In a x) -> (set_In a (set_add b x)). + + Proof. + Intros a b x [H1 | H2] ; Auto with datatypes. + Qed. + + Lemma set_add_elim : (a,b:A)(x:set) + (set_In a (set_add b x)) -> a=b\/(set_In a x). + + Proof. + Unfold set_In. + Induction x. + Simpl; Intros [H1|H2]; Auto with datatypes. + Simpl; Do 3 Intro. + Elim (Aeq_dec b a0). + Simpl; Tauto. + Simpl; Intros; Elim H0. + Trivial with datatypes. + Tauto. + Tauto. + Qed. + + Lemma set_add_elim2 : (a,b:A)(x:set) + (set_In a (set_add b x)) -> ~(a=b) -> (set_In a x). + Intros a b x H; Case (set_add_elim H); Intros; Trivial. + Case H1; Trivial. + Qed. + + Hints Resolve set_add_intro set_add_elim set_add_elim2. + + Lemma set_add_not_empty : (a:A)(x:set)~(set_add a x)=empty_set. + Proof. + Induction x; Simpl. + Discriminate. + Intros; Elim (Aeq_dec a a0); Intros; Discriminate. + Qed. + + + Lemma set_union_intro1 : (a:A)(x,y:set) + (set_In a x) -> (set_In a (set_union x y)). + Proof. + Induction y; Simpl; Auto with datatypes. + Qed. + + Lemma set_union_intro2 : (a:A)(x,y:set) + (set_In a y) -> (set_In a (set_union x y)). + Proof. + Induction y; Simpl. + Tauto. + Intros; Elim H0; Auto with datatypes. + Qed. + + Hints Resolve set_union_intro2 set_union_intro1. + + Lemma set_union_intro : (a:A)(x,y:set) + (set_In a x)\/(set_In a y) -> (set_In a (set_union x y)). + Proof. + Intros; Elim H; Auto with datatypes. + Qed. + + Lemma set_union_elim : (a:A)(x,y:set) + (set_In a (set_union x y)) -> (set_In a x)\/(set_In a y). + Proof. + Induction y; Simpl. + Auto with datatypes. + Intros. + Generalize (set_add_elim H0). + Intros [H1 | H1]. + Auto with datatypes. + Tauto. + Qed. + + Lemma set_union_emptyL : (a:A)(x:set)(set_In a (set_union empty_set x)) -> (set_In a x). + Intros a x H; Case (set_union_elim H); Auto Orelse Contradiction. + Qed. + + + Lemma set_union_emptyR : (a:A)(x:set)(set_In a (set_union x empty_set)) -> (set_In a x). + Intros a x H; Case (set_union_elim H); Auto Orelse Contradiction. + Qed. + + + Lemma set_inter_intro : (a:A)(x,y:set) + (set_In a x) -> (set_In a y) -> (set_In a (set_inter x y)). + Proof. + Induction x. + Auto with datatypes. + Simpl; Intros a0 l Hrec y [Ha0a | Hal] Hy. + Simpl; Rewrite Ha0a. + Generalize (!set_mem_correct1 a y). + Generalize (!set_mem_complete1 a y). + Elim (set_mem a y); Simpl; Intros. + Auto with datatypes. + Absurd (set_In a y); Auto with datatypes. + Elim (set_mem a0 y); [ Right; Auto with datatypes | Auto with datatypes]. + Qed. + + Lemma set_inter_elim1 : (a:A)(x,y:set) + (set_In a (set_inter x y)) -> (set_In a x). + Proof. + Induction x. + Auto with datatypes. + Simpl; Intros a0 l Hrec y. + Generalize (!set_mem_correct1 a0 y). + Elim (set_mem a0 y); Simpl; Intros. + Elim H0; EAuto with datatypes. + EAuto with datatypes. + Qed. + + Lemma set_inter_elim2 : (a:A)(x,y:set) + (set_In a (set_inter x y)) -> (set_In a y). + Proof. + Induction x. + Simpl; Tauto. + Simpl; Intros a0 l Hrec y. + Generalize (!set_mem_correct1 a0 y). + Elim (set_mem a0 y); Simpl; Intros. + Elim H0; [ Intro Hr; Rewrite <- Hr; EAuto with datatypes | EAuto with datatypes ] . + EAuto with datatypes. + Qed. + + Hints Resolve set_inter_elim1 set_inter_elim2. + + Lemma set_inter_elim : (a:A)(x,y:set) + (set_In a (set_inter x y)) -> (set_In a x)/\(set_In a y). + Proof. + EAuto with datatypes. + Qed. + + Lemma set_diff_intro : (a:A)(x,y:set) + (set_In a x) -> ~(set_In a y) -> (set_In a (set_diff x y)). + Proof. + Induction x. + Simpl; Tauto. + Simpl; Intros a0 l Hrec y [Ha0a | Hal] Hay. + Rewrite Ha0a; Generalize (set_mem_complete2 Hay). + Elim (set_mem a y); [ Intro Habs; Discriminate Habs | Auto with datatypes ]. + Elim (set_mem a0 y); Auto with datatypes. + Qed. + + Lemma set_diff_elim1 : (a:A)(x,y:set) + (set_In a (set_diff x y)) -> (set_In a x). + Proof. + Induction x. + Simpl; Tauto. + Simpl; Intros a0 l Hrec y; Elim (set_mem a0 y). + EAuto with datatypes. + Intro; Generalize (set_add_elim H). + Intros [H1 | H2]; EAuto with datatypes. + Qed. + + Lemma set_diff_elim2 : (a:A)(x,y:set) + (set_In a (set_diff x y)) -> ~(set_In a y). + Intros a x y; Elim x; Simpl. + Intros; Contradiction. + Intros a0 l Hrec. + Apply set_mem_ind2; Auto. + Intros H1 H2; Case (set_add_elim H2); Intros; Auto. + Rewrite H; Trivial. + Qed. + + Lemma set_diff_trivial : (a:A)(x:set)~(set_In a (set_diff x x)). + Red; Intros a x H. + Apply (set_diff_elim2 H). + Apply (set_diff_elim1 H). + Qed. + +Hints Resolve set_diff_intro set_diff_trivial. + + +End first_definitions. + +Section other_definitions. + + Variables A,B : Set. + + Definition set_prod : (set A) -> (set B) -> (set A*B) := (list_prod 1!A 2!B). + + (** [B^A], set of applications from [A] to [B] *) + Definition set_power : (set A) -> (set B) -> (set (set A*B)) := + (list_power 1!A 2!B). + + Definition set_map : (A->B) -> (set A) -> (set B) := (map 1!A 2!B). + + Definition set_fold_left : (B -> A -> B) -> (set A) -> B -> B := + (fold_left 1!B 2!A). + + Definition set_fold_right : (A -> B -> B) -> (set A) -> B -> B := + [f][x][b](fold_right f b x). + + +End other_definitions. + +V7only [Implicits nil [].]. +Unset Implicit Arguments. |