summaryrefslogtreecommitdiff
path: root/theories7/Init/Peano.v
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <samuel.mimram@ens-lyon.org>2004-07-28 21:54:47 +0000
committerGravatar Samuel Mimram <samuel.mimram@ens-lyon.org>2004-07-28 21:54:47 +0000
commit6b649aba925b6f7462da07599fe67ebb12a3460e (patch)
tree43656bcaa51164548f3fa14e5b10de5ef1088574 /theories7/Init/Peano.v
Imported Upstream version 8.0pl1upstream/8.0pl1
Diffstat (limited to 'theories7/Init/Peano.v')
-rwxr-xr-xtheories7/Init/Peano.v218
1 files changed, 218 insertions, 0 deletions
diff --git a/theories7/Init/Peano.v b/theories7/Init/Peano.v
new file mode 100755
index 00000000..72d19399
--- /dev/null
+++ b/theories7/Init/Peano.v
@@ -0,0 +1,218 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Peano.v,v 1.1.2.1 2004/07/16 19:31:26 herbelin Exp $ i*)
+
+(** Natural numbers [nat] built from [O] and [S] are defined in Datatypes.v *)
+
+(** This module defines the following operations on natural numbers :
+ - predecessor [pred]
+ - addition [plus]
+ - multiplication [mult]
+ - less or equal order [le]
+ - less [lt]
+ - greater or equal [ge]
+ - greater [gt]
+
+ This module states various lemmas and theorems about natural numbers,
+ including Peano's axioms of arithmetic (in Coq, these are in fact provable)
+ Case analysis on [nat] and induction on [nat * nat] are provided too *)
+
+Require Notations.
+Require Datatypes.
+Require Logic.
+
+Open Scope nat_scope.
+
+Definition eq_S := (f_equal nat nat S).
+
+Hint eq_S : v62 := Resolve (f_equal nat nat S).
+Hint eq_nat_unary : core := Resolve (f_equal nat).
+
+(** The predecessor function *)
+
+Definition pred : nat->nat := [n:nat](Cases n of O => O | (S u) => u end).
+Hint eq_pred : v62 := Resolve (f_equal nat nat pred).
+
+Theorem pred_Sn : (m:nat) m=(pred (S m)).
+Proof.
+ Auto.
+Qed.
+
+Theorem eq_add_S : (n,m:nat) (S n)=(S m) -> n=m.
+Proof.
+ Intros n m H ; Change (pred (S n))=(pred (S m)); Auto.
+Qed.
+
+Hints Immediate eq_add_S : core v62.
+
+(** A consequence of the previous axioms *)
+
+Theorem not_eq_S : (n,m:nat) ~(n=m) -> ~((S n)=(S m)).
+Proof.
+ Red; Auto.
+Qed.
+Hints Resolve not_eq_S : core v62.
+
+Definition IsSucc : nat->Prop
+ := [n:nat]Cases n of O => False | (S p) => True end.
+
+
+Theorem O_S : (n:nat)~(O=(S n)).
+Proof.
+ Red;Intros n H.
+ Change (IsSucc O).
+ Rewrite <- (sym_eq nat O (S n));[Exact I | Assumption].
+Qed.
+Hints Resolve O_S : core v62.
+
+Theorem n_Sn : (n:nat) ~(n=(S n)).
+Proof.
+ NewInduction n ; Auto.
+Qed.
+Hints Resolve n_Sn : core v62.
+
+(** Addition *)
+
+Fixpoint plus [n:nat] : nat -> nat :=
+ [m:nat]Cases n of
+ O => m
+ | (S p) => (S (plus p m)) end.
+Hint eq_plus : v62 := Resolve (f_equal2 nat nat nat plus).
+Hint eq_nat_binary : core := Resolve (f_equal2 nat nat).
+
+V8Infix "+" plus : nat_scope.
+
+Lemma plus_n_O : (n:nat) n=(plus n O).
+Proof.
+ NewInduction n ; Simpl ; Auto.
+Qed.
+Hints Resolve plus_n_O : core v62.
+
+Lemma plus_O_n : (n:nat) (plus O n)=n.
+Proof.
+ Auto.
+Qed.
+
+Lemma plus_n_Sm : (n,m:nat) (S (plus n m))=(plus n (S m)).
+Proof.
+ Intros n m; NewInduction n; Simpl; Auto.
+Qed.
+Hints Resolve plus_n_Sm : core v62.
+
+Lemma plus_Sn_m : (n,m:nat)(plus (S n) m)=(S (plus n m)).
+Proof.
+ Auto.
+Qed.
+
+(** Multiplication *)
+
+Fixpoint mult [n:nat] : nat -> nat :=
+ [m:nat]Cases n of O => O
+ | (S p) => (plus m (mult p m)) end.
+Hint eq_mult : core v62 := Resolve (f_equal2 nat nat nat mult).
+
+V8Infix "*" mult : nat_scope.
+
+Lemma mult_n_O : (n:nat) O=(mult n O).
+Proof.
+ NewInduction n; Simpl; Auto.
+Qed.
+Hints Resolve mult_n_O : core v62.
+
+Lemma mult_n_Sm : (n,m:nat) (plus (mult n m) n)=(mult n (S m)).
+Proof.
+ Intros; NewInduction n as [|p H]; Simpl; Auto.
+ NewDestruct H; Rewrite <- plus_n_Sm; Apply (f_equal nat nat S).
+ Pattern 1 3 m; Elim m; Simpl; Auto.
+Qed.
+Hints Resolve mult_n_Sm : core v62.
+
+(** Definition of subtraction on [nat] : [m-n] is [0] if [n>=m] *)
+
+Fixpoint minus [n:nat] : nat -> nat :=
+ [m:nat]Cases n m of
+ O _ => O
+ | (S k) O => (S k)
+ | (S k) (S l) => (minus k l)
+ end.
+
+V8Infix "-" minus : nat_scope.
+
+(** Definition of the usual orders, the basic properties of [le] and [lt]
+ can be found in files Le and Lt *)
+
+(** An inductive definition to define the order *)
+
+Inductive le [n:nat] : nat -> Prop
+ := le_n : (le n n)
+ | le_S : (m:nat)(le n m)->(le n (S m)).
+
+V8Infix "<=" le : nat_scope.
+
+Hint constr_le : core v62 := Constructors le.
+(*i equivalent to : "Hints Resolve le_n le_S : core v62." i*)
+
+Definition lt := [n,m:nat](le (S n) m).
+Hints Unfold lt : core v62.
+
+V8Infix "<" lt : nat_scope.
+
+Definition ge := [n,m:nat](le m n).
+Hints Unfold ge : core v62.
+
+V8Infix ">=" ge : nat_scope.
+
+Definition gt := [n,m:nat](lt m n).
+Hints Unfold gt : core v62.
+
+V8Infix ">" gt : nat_scope.
+
+V8Notation "x <= y <= z" := (le x y)/\(le y z) : nat_scope.
+V8Notation "x <= y < z" := (le x y)/\(lt y z) : nat_scope.
+V8Notation "x < y < z" := (lt x y)/\(lt y z) : nat_scope.
+V8Notation "x < y <= z" := (lt x y)/\(le y z) : nat_scope.
+
+(** Pattern-Matching on natural numbers *)
+
+Theorem nat_case : (n:nat)(P:nat->Prop)(P O)->((m:nat)(P (S m)))->(P n).
+Proof.
+ NewInduction n ; Auto.
+Qed.
+
+(** Principle of double induction *)
+
+Theorem nat_double_ind : (R:nat->nat->Prop)
+ ((n:nat)(R O n)) -> ((n:nat)(R (S n) O))
+ -> ((n,m:nat)(R n m)->(R (S n) (S m)))
+ -> (n,m:nat)(R n m).
+Proof.
+ NewInduction n; Auto.
+ NewDestruct m; Auto.
+Qed.
+
+(** Notations *)
+V7only[
+Syntax constr
+ level 0:
+ S [ (S $p) ] -> [$p:"nat_printer":9]
+ | O [ O ] -> ["(0)"].
+].
+
+V7only [
+(* For parsing/printing based on scopes *)
+Module nat_scope.
+Infix 4 "+" plus : nat_scope.
+Infix 3 "*" mult : nat_scope.
+Infix 4 "-" minus : nat_scope.
+Infix NONA 5 "<=" le : nat_scope.
+Infix NONA 5 "<" lt : nat_scope.
+Infix NONA 5 ">=" ge : nat_scope.
+Infix NONA 5 ">" gt : nat_scope.
+End nat_scope.
+].