summaryrefslogtreecommitdiff
path: root/theories7/Init/Peano.v
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <smimram@debian.org>2006-04-28 14:59:16 +0000
committerGravatar Samuel Mimram <smimram@debian.org>2006-04-28 14:59:16 +0000
commit3ef7797ef6fc605dfafb32523261fe1b023aeecb (patch)
treead89c6bb57ceee608fcba2bb3435b74e0f57919e /theories7/Init/Peano.v
parent018ee3b0c2be79eb81b1f65c3f3fa142d24129c8 (diff)
Imported Upstream version 8.0pl3+8.1alphaupstream/8.0pl3+8.1alpha
Diffstat (limited to 'theories7/Init/Peano.v')
-rwxr-xr-xtheories7/Init/Peano.v218
1 files changed, 0 insertions, 218 deletions
diff --git a/theories7/Init/Peano.v b/theories7/Init/Peano.v
deleted file mode 100755
index 72d19399..00000000
--- a/theories7/Init/Peano.v
+++ /dev/null
@@ -1,218 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Peano.v,v 1.1.2.1 2004/07/16 19:31:26 herbelin Exp $ i*)
-
-(** Natural numbers [nat] built from [O] and [S] are defined in Datatypes.v *)
-
-(** This module defines the following operations on natural numbers :
- - predecessor [pred]
- - addition [plus]
- - multiplication [mult]
- - less or equal order [le]
- - less [lt]
- - greater or equal [ge]
- - greater [gt]
-
- This module states various lemmas and theorems about natural numbers,
- including Peano's axioms of arithmetic (in Coq, these are in fact provable)
- Case analysis on [nat] and induction on [nat * nat] are provided too *)
-
-Require Notations.
-Require Datatypes.
-Require Logic.
-
-Open Scope nat_scope.
-
-Definition eq_S := (f_equal nat nat S).
-
-Hint eq_S : v62 := Resolve (f_equal nat nat S).
-Hint eq_nat_unary : core := Resolve (f_equal nat).
-
-(** The predecessor function *)
-
-Definition pred : nat->nat := [n:nat](Cases n of O => O | (S u) => u end).
-Hint eq_pred : v62 := Resolve (f_equal nat nat pred).
-
-Theorem pred_Sn : (m:nat) m=(pred (S m)).
-Proof.
- Auto.
-Qed.
-
-Theorem eq_add_S : (n,m:nat) (S n)=(S m) -> n=m.
-Proof.
- Intros n m H ; Change (pred (S n))=(pred (S m)); Auto.
-Qed.
-
-Hints Immediate eq_add_S : core v62.
-
-(** A consequence of the previous axioms *)
-
-Theorem not_eq_S : (n,m:nat) ~(n=m) -> ~((S n)=(S m)).
-Proof.
- Red; Auto.
-Qed.
-Hints Resolve not_eq_S : core v62.
-
-Definition IsSucc : nat->Prop
- := [n:nat]Cases n of O => False | (S p) => True end.
-
-
-Theorem O_S : (n:nat)~(O=(S n)).
-Proof.
- Red;Intros n H.
- Change (IsSucc O).
- Rewrite <- (sym_eq nat O (S n));[Exact I | Assumption].
-Qed.
-Hints Resolve O_S : core v62.
-
-Theorem n_Sn : (n:nat) ~(n=(S n)).
-Proof.
- NewInduction n ; Auto.
-Qed.
-Hints Resolve n_Sn : core v62.
-
-(** Addition *)
-
-Fixpoint plus [n:nat] : nat -> nat :=
- [m:nat]Cases n of
- O => m
- | (S p) => (S (plus p m)) end.
-Hint eq_plus : v62 := Resolve (f_equal2 nat nat nat plus).
-Hint eq_nat_binary : core := Resolve (f_equal2 nat nat).
-
-V8Infix "+" plus : nat_scope.
-
-Lemma plus_n_O : (n:nat) n=(plus n O).
-Proof.
- NewInduction n ; Simpl ; Auto.
-Qed.
-Hints Resolve plus_n_O : core v62.
-
-Lemma plus_O_n : (n:nat) (plus O n)=n.
-Proof.
- Auto.
-Qed.
-
-Lemma plus_n_Sm : (n,m:nat) (S (plus n m))=(plus n (S m)).
-Proof.
- Intros n m; NewInduction n; Simpl; Auto.
-Qed.
-Hints Resolve plus_n_Sm : core v62.
-
-Lemma plus_Sn_m : (n,m:nat)(plus (S n) m)=(S (plus n m)).
-Proof.
- Auto.
-Qed.
-
-(** Multiplication *)
-
-Fixpoint mult [n:nat] : nat -> nat :=
- [m:nat]Cases n of O => O
- | (S p) => (plus m (mult p m)) end.
-Hint eq_mult : core v62 := Resolve (f_equal2 nat nat nat mult).
-
-V8Infix "*" mult : nat_scope.
-
-Lemma mult_n_O : (n:nat) O=(mult n O).
-Proof.
- NewInduction n; Simpl; Auto.
-Qed.
-Hints Resolve mult_n_O : core v62.
-
-Lemma mult_n_Sm : (n,m:nat) (plus (mult n m) n)=(mult n (S m)).
-Proof.
- Intros; NewInduction n as [|p H]; Simpl; Auto.
- NewDestruct H; Rewrite <- plus_n_Sm; Apply (f_equal nat nat S).
- Pattern 1 3 m; Elim m; Simpl; Auto.
-Qed.
-Hints Resolve mult_n_Sm : core v62.
-
-(** Definition of subtraction on [nat] : [m-n] is [0] if [n>=m] *)
-
-Fixpoint minus [n:nat] : nat -> nat :=
- [m:nat]Cases n m of
- O _ => O
- | (S k) O => (S k)
- | (S k) (S l) => (minus k l)
- end.
-
-V8Infix "-" minus : nat_scope.
-
-(** Definition of the usual orders, the basic properties of [le] and [lt]
- can be found in files Le and Lt *)
-
-(** An inductive definition to define the order *)
-
-Inductive le [n:nat] : nat -> Prop
- := le_n : (le n n)
- | le_S : (m:nat)(le n m)->(le n (S m)).
-
-V8Infix "<=" le : nat_scope.
-
-Hint constr_le : core v62 := Constructors le.
-(*i equivalent to : "Hints Resolve le_n le_S : core v62." i*)
-
-Definition lt := [n,m:nat](le (S n) m).
-Hints Unfold lt : core v62.
-
-V8Infix "<" lt : nat_scope.
-
-Definition ge := [n,m:nat](le m n).
-Hints Unfold ge : core v62.
-
-V8Infix ">=" ge : nat_scope.
-
-Definition gt := [n,m:nat](lt m n).
-Hints Unfold gt : core v62.
-
-V8Infix ">" gt : nat_scope.
-
-V8Notation "x <= y <= z" := (le x y)/\(le y z) : nat_scope.
-V8Notation "x <= y < z" := (le x y)/\(lt y z) : nat_scope.
-V8Notation "x < y < z" := (lt x y)/\(lt y z) : nat_scope.
-V8Notation "x < y <= z" := (lt x y)/\(le y z) : nat_scope.
-
-(** Pattern-Matching on natural numbers *)
-
-Theorem nat_case : (n:nat)(P:nat->Prop)(P O)->((m:nat)(P (S m)))->(P n).
-Proof.
- NewInduction n ; Auto.
-Qed.
-
-(** Principle of double induction *)
-
-Theorem nat_double_ind : (R:nat->nat->Prop)
- ((n:nat)(R O n)) -> ((n:nat)(R (S n) O))
- -> ((n,m:nat)(R n m)->(R (S n) (S m)))
- -> (n,m:nat)(R n m).
-Proof.
- NewInduction n; Auto.
- NewDestruct m; Auto.
-Qed.
-
-(** Notations *)
-V7only[
-Syntax constr
- level 0:
- S [ (S $p) ] -> [$p:"nat_printer":9]
- | O [ O ] -> ["(0)"].
-].
-
-V7only [
-(* For parsing/printing based on scopes *)
-Module nat_scope.
-Infix 4 "+" plus : nat_scope.
-Infix 3 "*" mult : nat_scope.
-Infix 4 "-" minus : nat_scope.
-Infix NONA 5 "<=" le : nat_scope.
-Infix NONA 5 "<" lt : nat_scope.
-Infix NONA 5 ">=" ge : nat_scope.
-Infix NONA 5 ">" gt : nat_scope.
-End nat_scope.
-].