diff options
author | Samuel Mimram <samuel.mimram@ens-lyon.org> | 2004-07-28 21:54:47 +0000 |
---|---|---|
committer | Samuel Mimram <samuel.mimram@ens-lyon.org> | 2004-07-28 21:54:47 +0000 |
commit | 6b649aba925b6f7462da07599fe67ebb12a3460e (patch) | |
tree | 43656bcaa51164548f3fa14e5b10de5ef1088574 /theories7/Arith/Max.v |
Imported Upstream version 8.0pl1upstream/8.0pl1
Diffstat (limited to 'theories7/Arith/Max.v')
-rwxr-xr-x | theories7/Arith/Max.v | 87 |
1 files changed, 87 insertions, 0 deletions
diff --git a/theories7/Arith/Max.v b/theories7/Arith/Max.v new file mode 100755 index 00000000..aea389d1 --- /dev/null +++ b/theories7/Arith/Max.v @@ -0,0 +1,87 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: Max.v,v 1.1.2.1 2004/07/16 19:31:24 herbelin Exp $ i*) + +Require Arith. + +V7only [Import nat_scope.]. +Open Local Scope nat_scope. + +Implicit Variables Type m,n:nat. + +(** maximum of two natural numbers *) + +Fixpoint max [n:nat] : nat -> nat := +[m:nat]Cases n m of + O _ => m + | (S n') O => n + | (S n') (S m') => (S (max n' m')) + end. + +(** Simplifications of [max] *) + +Lemma max_SS : (n,m:nat)((S (max n m))=(max (S n) (S m))). +Proof. +Auto with arith. +Qed. + +Lemma max_sym : (n,m:nat)(max n m)=(max m n). +Proof. +NewInduction n;NewInduction m;Simpl;Auto with arith. +Qed. + +(** [max] and [le] *) + +Lemma max_l : (n,m:nat)(le m n)->(max n m)=n. +Proof. +NewInduction n;NewInduction m;Simpl;Auto with arith. +Qed. + +Lemma max_r : (n,m:nat)(le n m)->(max n m)=m. +Proof. +NewInduction n;NewInduction m;Simpl;Auto with arith. +Qed. + +Lemma le_max_l : (n,m:nat)(le n (max n m)). +Proof. +NewInduction n; Intros; Simpl; Auto with arith. +Elim m; Intros; Simpl; Auto with arith. +Qed. + +Lemma le_max_r : (n,m:nat)(le m (max n m)). +Proof. +NewInduction n; Simpl; Auto with arith. +NewInduction m; Simpl; Auto with arith. +Qed. +Hints Resolve max_r max_l le_max_l le_max_r: arith v62. + + +(** [max n m] is equal to [n] or [m] *) + +Lemma max_dec : (n,m:nat){(max n m)=n}+{(max n m)=m}. +Proof. +NewInduction n;NewInduction m;Simpl;Auto with arith. +Elim (IHn m);Intro H;Elim H;Auto. +Qed. + +Lemma max_case : (n,m:nat)(P:nat->Set)(P n)->(P m)->(P (max n m)). +Proof. +NewInduction n; Simpl; Auto with arith. +NewInduction m; Intros; Simpl; Auto with arith. +Pattern (max n m); Apply IHn ; Auto with arith. +Qed. + +Lemma max_case2 : (n,m:nat)(P:nat->Prop)(P n)->(P m)->(P (max n m)). +Proof. +NewInduction n; Simpl; Auto with arith. +NewInduction m; Intros; Simpl; Auto with arith. +Pattern (max n m); Apply IHn ; Auto with arith. +Qed. + + |