summaryrefslogtreecommitdiff
path: root/theories7/Arith/Max.v
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <samuel.mimram@ens-lyon.org>2004-07-28 21:54:47 +0000
committerGravatar Samuel Mimram <samuel.mimram@ens-lyon.org>2004-07-28 21:54:47 +0000
commit6b649aba925b6f7462da07599fe67ebb12a3460e (patch)
tree43656bcaa51164548f3fa14e5b10de5ef1088574 /theories7/Arith/Max.v
Imported Upstream version 8.0pl1upstream/8.0pl1
Diffstat (limited to 'theories7/Arith/Max.v')
-rwxr-xr-xtheories7/Arith/Max.v87
1 files changed, 87 insertions, 0 deletions
diff --git a/theories7/Arith/Max.v b/theories7/Arith/Max.v
new file mode 100755
index 00000000..aea389d1
--- /dev/null
+++ b/theories7/Arith/Max.v
@@ -0,0 +1,87 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Max.v,v 1.1.2.1 2004/07/16 19:31:24 herbelin Exp $ i*)
+
+Require Arith.
+
+V7only [Import nat_scope.].
+Open Local Scope nat_scope.
+
+Implicit Variables Type m,n:nat.
+
+(** maximum of two natural numbers *)
+
+Fixpoint max [n:nat] : nat -> nat :=
+[m:nat]Cases n m of
+ O _ => m
+ | (S n') O => n
+ | (S n') (S m') => (S (max n' m'))
+ end.
+
+(** Simplifications of [max] *)
+
+Lemma max_SS : (n,m:nat)((S (max n m))=(max (S n) (S m))).
+Proof.
+Auto with arith.
+Qed.
+
+Lemma max_sym : (n,m:nat)(max n m)=(max m n).
+Proof.
+NewInduction n;NewInduction m;Simpl;Auto with arith.
+Qed.
+
+(** [max] and [le] *)
+
+Lemma max_l : (n,m:nat)(le m n)->(max n m)=n.
+Proof.
+NewInduction n;NewInduction m;Simpl;Auto with arith.
+Qed.
+
+Lemma max_r : (n,m:nat)(le n m)->(max n m)=m.
+Proof.
+NewInduction n;NewInduction m;Simpl;Auto with arith.
+Qed.
+
+Lemma le_max_l : (n,m:nat)(le n (max n m)).
+Proof.
+NewInduction n; Intros; Simpl; Auto with arith.
+Elim m; Intros; Simpl; Auto with arith.
+Qed.
+
+Lemma le_max_r : (n,m:nat)(le m (max n m)).
+Proof.
+NewInduction n; Simpl; Auto with arith.
+NewInduction m; Simpl; Auto with arith.
+Qed.
+Hints Resolve max_r max_l le_max_l le_max_r: arith v62.
+
+
+(** [max n m] is equal to [n] or [m] *)
+
+Lemma max_dec : (n,m:nat){(max n m)=n}+{(max n m)=m}.
+Proof.
+NewInduction n;NewInduction m;Simpl;Auto with arith.
+Elim (IHn m);Intro H;Elim H;Auto.
+Qed.
+
+Lemma max_case : (n,m:nat)(P:nat->Set)(P n)->(P m)->(P (max n m)).
+Proof.
+NewInduction n; Simpl; Auto with arith.
+NewInduction m; Intros; Simpl; Auto with arith.
+Pattern (max n m); Apply IHn ; Auto with arith.
+Qed.
+
+Lemma max_case2 : (n,m:nat)(P:nat->Prop)(P n)->(P m)->(P (max n m)).
+Proof.
+NewInduction n; Simpl; Auto with arith.
+NewInduction m; Intros; Simpl; Auto with arith.
+Pattern (max n m); Apply IHn ; Auto with arith.
+Qed.
+
+