diff options
author | Samuel Mimram <smimram@debian.org> | 2006-04-28 14:59:16 +0000 |
---|---|---|
committer | Samuel Mimram <smimram@debian.org> | 2006-04-28 14:59:16 +0000 |
commit | 3ef7797ef6fc605dfafb32523261fe1b023aeecb (patch) | |
tree | ad89c6bb57ceee608fcba2bb3435b74e0f57919e /theories7/Arith/Div.v | |
parent | 018ee3b0c2be79eb81b1f65c3f3fa142d24129c8 (diff) |
Imported Upstream version 8.0pl3+8.1alphaupstream/8.0pl3+8.1alpha
Diffstat (limited to 'theories7/Arith/Div.v')
-rwxr-xr-x | theories7/Arith/Div.v | 64 |
1 files changed, 0 insertions, 64 deletions
diff --git a/theories7/Arith/Div.v b/theories7/Arith/Div.v deleted file mode 100755 index 59694628..00000000 --- a/theories7/Arith/Div.v +++ /dev/null @@ -1,64 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -(*i $Id: Div.v,v 1.1.2.1 2004/07/16 19:31:23 herbelin Exp $ i*) - -(** Euclidean division *) - -V7only [Import nat_scope.]. -Open Local Scope nat_scope. - -Require Le. -Require Euclid_def. -Require Compare_dec. - -Implicit Variables Type n,a,b,q,r:nat. - -Fixpoint inf_dec [n:nat] : nat->bool := - [m:nat] Cases n m of - O _ => true - | (S n') O => false - | (S n') (S m') => (inf_dec n' m') - end. - -Theorem div1 : (b:nat)(gt b O)->(a:nat)(diveucl a b). -Realizer Fix div1 {div1/2: nat->nat->diveucl := - [b,a]Cases a of - O => (O,O) - | (S n) => - let (q,r) = (div1 b n) in - if (le_gt_dec b (S r)) then ((S q),O) - else (q,(S r)) - end}. -Program_all. -Rewrite e. -Replace b with (S r). -Simpl. -Elim plus_n_O; Auto with arith. -Apply le_antisym; Auto with arith. -Elim plus_n_Sm; Auto with arith. -Qed. - -Theorem div2 : (b:nat)(gt b O)->(a:nat)(diveucl a b). -Realizer Fix div1 {div1/2: nat->nat->diveucl := - [b,a]Cases a of - O => (O,O) - | (S n) => - let (q,r) = (div1 b n) in - if (inf_dec b (S r)) :: :: { {(le b (S r))}+{(gt b (S r))} } - then ((S q),O) - else (q,(S r)) - end}. -Program_all. -Rewrite e. -Replace b with (S r). -Simpl. -Elim plus_n_O; Auto with arith. -Apply le_antisym; Auto with arith. -Elim plus_n_Sm; Auto with arith. -Qed. |