summaryrefslogtreecommitdiff
path: root/theories/ZArith
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2012-06-04 12:07:52 +0200
committerGravatar Stephane Glondu <steph@glondu.net>2012-06-04 12:07:52 +0200
commit61dc740ed1c3780cccaec00d059a28f0d31d0052 (patch)
treed88d05baf35b9b09a034233300f35a694f9fa6c2 /theories/ZArith
parent97fefe1fcca363a1317e066e7f4b99b9c1e9987b (diff)
Imported Upstream version 8.4~gamma0+really8.4beta2upstream/8.4_gamma0+really8.4beta2
Diffstat (limited to 'theories/ZArith')
-rw-r--r--theories/ZArith/Int.v128
-rw-r--r--theories/ZArith/ZOdiv.v88
-rw-r--r--theories/ZArith/ZOdiv_def.v15
-rw-r--r--theories/ZArith/Zeven.v6
-rw-r--r--theories/ZArith/vo.itarget2
5 files changed, 171 insertions, 68 deletions
diff --git a/theories/ZArith/Int.v b/theories/ZArith/Int.v
index bac50fc4..7c840c56 100644
--- a/theories/ZArith/Int.v
+++ b/theories/ZArith/Int.v
@@ -16,28 +16,29 @@
Require Import ZArith.
Delimit Scope Int_scope with I.
-
+Local Open Scope Int_scope.
(** * a specification of integers *)
Module Type Int.
- Open Scope Int_scope.
+ Parameter t : Set.
+ Bind Scope Int_scope with t.
- Parameter int : Set.
+ (** For compatibility *)
+ Definition int := t.
- Parameter i2z : int -> Z.
- Arguments i2z _%I.
+ Parameter i2z : t -> Z.
- Parameter _0 : int.
- Parameter _1 : int.
- Parameter _2 : int.
- Parameter _3 : int.
- Parameter plus : int -> int -> int.
- Parameter opp : int -> int.
- Parameter minus : int -> int -> int.
- Parameter mult : int -> int -> int.
- Parameter max : int -> int -> int.
+ Parameter _0 : t.
+ Parameter _1 : t.
+ Parameter _2 : t.
+ Parameter _3 : t.
+ Parameter plus : t -> t -> t.
+ Parameter opp : t -> t.
+ Parameter minus : t -> t -> t.
+ Parameter mult : t -> t -> t.
+ Parameter max : t -> t -> t.
Notation "0" := _0 : Int_scope.
Notation "1" := _1 : Int_scope.
@@ -54,10 +55,10 @@ Module Type Int.
Notation "x == y" := (i2z x = i2z y)
(at level 70, y at next level, no associativity) : Int_scope.
- Notation "x <= y" := (Zle (i2z x) (i2z y)): Int_scope.
- Notation "x < y" := (Zlt (i2z x) (i2z y)) : Int_scope.
- Notation "x >= y" := (Zge (i2z x) (i2z y)) : Int_scope.
- Notation "x > y" := (Zgt (i2z x) (i2z y)): Int_scope.
+ Notation "x <= y" := (i2z x <= i2z y)%Z : Int_scope.
+ Notation "x < y" := (i2z x < i2z y)%Z : Int_scope.
+ Notation "x >= y" := (i2z x >= i2z y)%Z : Int_scope.
+ Notation "x > y" := (i2z x > i2z y)%Z : Int_scope.
Notation "x <= y <= z" := (x <= y /\ y <= z) : Int_scope.
Notation "x <= y < z" := (x <= y /\ y < z) : Int_scope.
Notation "x < y < z" := (x < y /\ y < z) : Int_scope.
@@ -65,41 +66,39 @@ Module Type Int.
(** Some decidability fonctions (informative). *)
- Axiom gt_le_dec : forall x y: int, {x > y} + {x <= y}.
- Axiom ge_lt_dec : forall x y : int, {x >= y} + {x < y}.
- Axiom eq_dec : forall x y : int, { x == y } + {~ x==y }.
+ Axiom gt_le_dec : forall x y : t, {x > y} + {x <= y}.
+ Axiom ge_lt_dec : forall x y : t, {x >= y} + {x < y}.
+ Axiom eq_dec : forall x y : t, { x == y } + {~ x==y }.
(** Specifications *)
(** First, we ask [i2z] to be injective. Said otherwise, our ad-hoc equality
[==] and the generic [=] are in fact equivalent. We define [==]
- nonetheless since the translation to [Z] for using automatic tactic is easier. *)
+ nonetheless since the translation to [Z] for using automatic tactic
+ is easier. *)
- Axiom i2z_eq : forall n p : int, n == p -> n = p.
+ Axiom i2z_eq : forall n p : t, n == p -> n = p.
(** Then, we express the specifications of the above parameters using their
Z counterparts. *)
- Open Scope Z_scope.
- Axiom i2z_0 : i2z _0 = 0.
- Axiom i2z_1 : i2z _1 = 1.
- Axiom i2z_2 : i2z _2 = 2.
- Axiom i2z_3 : i2z _3 = 3.
- Axiom i2z_plus : forall n p, i2z (n + p) = i2z n + i2z p.
- Axiom i2z_opp : forall n, i2z (-n) = -i2z n.
- Axiom i2z_minus : forall n p, i2z (n - p) = i2z n - i2z p.
- Axiom i2z_mult : forall n p, i2z (n * p) = i2z n * i2z p.
- Axiom i2z_max : forall n p, i2z (max n p) = Zmax (i2z n) (i2z p).
+ Axiom i2z_0 : i2z _0 = 0%Z.
+ Axiom i2z_1 : i2z _1 = 1%Z.
+ Axiom i2z_2 : i2z _2 = 2%Z.
+ Axiom i2z_3 : i2z _3 = 3%Z.
+ Axiom i2z_plus : forall n p, i2z (n + p) = (i2z n + i2z p)%Z.
+ Axiom i2z_opp : forall n, i2z (-n) = (-i2z n)%Z.
+ Axiom i2z_minus : forall n p, i2z (n - p) = (i2z n - i2z p)%Z.
+ Axiom i2z_mult : forall n p, i2z (n * p) = (i2z n * i2z p)%Z.
+ Axiom i2z_max : forall n p, i2z (max n p) = Z.max (i2z n) (i2z p).
End Int.
(** * Facts and tactics using [Int] *)
-Module MoreInt (I:Int).
- Import I.
-
- Open Scope Int_scope.
+Module MoreInt (Import I:Int).
+ Local Notation int := I.t.
(** A magic (but costly) tactic that goes from [int] back to the [Z]
friendly world ... *)
@@ -108,13 +107,14 @@ Module MoreInt (I:Int).
i2z_0 i2z_1 i2z_2 i2z_3 i2z_plus i2z_opp i2z_minus i2z_mult i2z_max : i2z.
Ltac i2z := match goal with
- | H : (eq (A:=int) ?a ?b) |- _ =>
- generalize (f_equal i2z H);
- try autorewrite with i2z; clear H; intro H; i2z
- | |- (eq (A:=int) ?a ?b) => apply (i2z_eq a b); try autorewrite with i2z; i2z
- | H : _ |- _ => progress autorewrite with i2z in H; i2z
- | _ => try autorewrite with i2z
- end.
+ | H : ?a = ?b |- _ =>
+ generalize (f_equal i2z H);
+ try autorewrite with i2z; clear H; intro H; i2z
+ | |- ?a = ?b =>
+ apply (i2z_eq a b); try autorewrite with i2z; i2z
+ | H : _ |- _ => progress autorewrite with i2z in H; i2z
+ | _ => try autorewrite with i2z
+ end.
(** A reflexive version of the [i2z] tactic *)
@@ -124,14 +124,14 @@ Module MoreInt (I:Int).
Anyhow, [i2z_refl] is enough for applying [romega]. *)
Ltac i2z_gen := match goal with
- | |- (eq (A:=int) ?a ?b) => apply (i2z_eq a b); i2z_gen
- | H : (eq (A:=int) ?a ?b) |- _ =>
+ | |- ?a = ?b => apply (i2z_eq a b); i2z_gen
+ | H : ?a = ?b |- _ =>
generalize (f_equal i2z H); clear H; i2z_gen
- | H : (eq (A:=Z) ?a ?b) |- _ => revert H; i2z_gen
- | H : (Zlt ?a ?b) |- _ => revert H; i2z_gen
- | H : (Zle ?a ?b) |- _ => revert H; i2z_gen
- | H : (Zgt ?a ?b) |- _ => revert H; i2z_gen
- | H : (Zge ?a ?b) |- _ => revert H; i2z_gen
+ | H : eq (A:=Z) ?a ?b |- _ => revert H; i2z_gen
+ | H : Z.lt ?a ?b |- _ => revert H; i2z_gen
+ | H : Z.le ?a ?b |- _ => revert H; i2z_gen
+ | H : Z.gt ?a ?b |- _ => revert H; i2z_gen
+ | H : Z.ge ?a ?b |- _ => revert H; i2z_gen
| H : _ -> ?X |- _ =>
(* A [Set] or [Type] part cannot be dealt with easily
using the [ExprP] datatype. So we forget it, leaving
@@ -201,11 +201,11 @@ Module MoreInt (I:Int).
with z2ez trm :=
match constr:trm with
- | (?x+?y)%Z => let ex := z2ez x with ey := z2ez y in constr:(EZplus ex ey)
- | (?x-?y)%Z => let ex := z2ez x with ey := z2ez y in constr:(EZminus ex ey)
- | (?x*?y)%Z => let ex := z2ez x with ey := z2ez y in constr:(EZmult ex ey)
- | (Zmax ?x ?y) => let ex := z2ez x with ey := z2ez y in constr:(EZmax ex ey)
- | (-?x)%Z => let ex := z2ez x in constr:(EZopp ex)
+ | (?x + ?y)%Z => let ex := z2ez x with ey := z2ez y in constr:(EZplus ex ey)
+ | (?x - ?y)%Z => let ex := z2ez x with ey := z2ez y in constr:(EZminus ex ey)
+ | (?x * ?y)%Z => let ex := z2ez x with ey := z2ez y in constr:(EZmult ex ey)
+ | (Z.max ?x ?y) => let ex := z2ez x with ey := z2ez y in constr:(EZmax ex ey)
+ | (- ?x)%Z => let ex := z2ez x in constr:(EZopp ex)
| i2z ?x => let ex := i2ei x in constr:(EZofI ex)
| ?x => constr:(EZraw x)
end.
@@ -360,8 +360,9 @@ End MoreInt.
(** It's always nice to know that our [Int] interface is realizable :-) *)
Module Z_as_Int <: Int.
- Open Scope Z_scope.
- Definition int := Z.
+ Local Open Scope Z_scope.
+ Definition t := Z.
+ Definition int := t.
Definition _0 := 0.
Definition _1 := 1.
Definition _2 := 2.
@@ -380,10 +381,9 @@ Module Z_as_Int <: Int.
Lemma i2z_1 : i2z _1 = 1. Proof. auto. Qed.
Lemma i2z_2 : i2z _2 = 2. Proof. auto. Qed.
Lemma i2z_3 : i2z _3 = 3. Proof. auto. Qed.
- Lemma i2z_plus : forall n p, i2z (n + p) = i2z n + i2z p. Proof. auto. Qed.
- Lemma i2z_opp : forall n, i2z (- n) = - i2z n. Proof. auto. Qed.
- Lemma i2z_minus : forall n p, i2z (n - p) = i2z n - i2z p. Proof. auto. Qed.
- Lemma i2z_mult : forall n p, i2z (n * p) = i2z n * i2z p. Proof. auto. Qed.
- Lemma i2z_max : forall n p, i2z (max n p) = Zmax (i2z n) (i2z p). Proof. auto. Qed.
+ Lemma i2z_plus n p : i2z (n + p) = i2z n + i2z p. Proof. auto. Qed.
+ Lemma i2z_opp n : i2z (- n) = - i2z n. Proof. auto. Qed.
+ Lemma i2z_minus n p : i2z (n - p) = i2z n - i2z p. Proof. auto. Qed.
+ Lemma i2z_mult n p : i2z (n * p) = i2z n * i2z p. Proof. auto. Qed.
+ Lemma i2z_max n p : i2z (max n p) = Zmax (i2z n) (i2z p). Proof. auto. Qed.
End Z_as_Int.
-
diff --git a/theories/ZArith/ZOdiv.v b/theories/ZArith/ZOdiv.v
new file mode 100644
index 00000000..17c5bae3
--- /dev/null
+++ b/theories/ZArith/ZOdiv.v
@@ -0,0 +1,88 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Export ZOdiv_def.
+Require Import BinInt Zquot.
+
+Notation ZO_div_mod_eq := Z.quot_rem' (only parsing).
+Notation ZOmod_lt := Zrem_lt (only parsing).
+Notation ZOmod_sgn := Zrem_sgn (only parsing).
+Notation ZOmod_sgn2 := Zrem_sgn2 (only parsing).
+Notation ZOmod_lt_pos := Zrem_lt_pos (only parsing).
+Notation ZOmod_lt_neg := Zrem_lt_neg (only parsing).
+Notation ZOmod_lt_pos_pos := Zrem_lt_pos_pos (only parsing).
+Notation ZOmod_lt_pos_neg := Zrem_lt_pos_neg (only parsing).
+Notation ZOmod_lt_neg_pos := Zrem_lt_neg_pos (only parsing).
+Notation ZOmod_lt_neg_neg := Zrem_lt_neg_neg (only parsing).
+
+Notation ZOdiv_opp_l := Zquot_opp_l (only parsing).
+Notation ZOdiv_opp_r := Zquot_opp_r (only parsing).
+Notation ZOmod_opp_l := Zrem_opp_l (only parsing).
+Notation ZOmod_opp_r := Zrem_opp_r (only parsing).
+Notation ZOdiv_opp_opp := Zquot_opp_opp (only parsing).
+Notation ZOmod_opp_opp := Zrem_opp_opp (only parsing).
+
+Notation Remainder := Remainder (only parsing).
+Notation Remainder_alt := Remainder_alt (only parsing).
+Notation Remainder_equiv := Remainder_equiv (only parsing).
+Notation ZOdiv_mod_unique_full := Zquot_mod_unique_full (only parsing).
+Notation ZOdiv_unique_full := Zquot_unique_full (only parsing).
+Notation ZOdiv_unique := Zquot_unique (only parsing).
+Notation ZOmod_unique_full := Zrem_unique_full (only parsing).
+Notation ZOmod_unique := Zrem_unique (only parsing).
+
+Notation ZOmod_0_l := Zrem_0_l (only parsing).
+Notation ZOmod_0_r := Zrem_0_r (only parsing).
+Notation ZOdiv_0_l := Zquot_0_l (only parsing).
+Notation ZOdiv_0_r := Zquot_0_r (only parsing).
+Notation ZOmod_1_r := Zrem_1_r (only parsing).
+Notation ZOdiv_1_r := Zquot_1_r (only parsing).
+Notation ZOdiv_1_l := Zquot_1_l (only parsing).
+Notation ZOmod_1_l := Zrem_1_l (only parsing).
+Notation ZO_div_same := Z_quot_same (only parsing).
+Notation ZO_mod_same := Z_rem_same (only parsing).
+Notation ZO_mod_mult := Z_rem_mult (only parsing).
+Notation ZO_div_mult := Z_quot_mult (only parsing).
+
+Notation ZO_div_pos := Z_quot_pos (only parsing).
+Notation ZO_div_lt := Z_quot_lt (only parsing).
+Notation ZOdiv_small := Zquot_small (only parsing).
+Notation ZOmod_small := Zrem_small (only parsing).
+Notation ZO_div_monotone := Z_quot_monotone (only parsing).
+Notation ZO_mult_div_le := Z_mult_quot_le (only parsing).
+Notation ZO_mult_div_ge := Z_mult_quot_ge (only parsing).
+Definition ZO_div_exact_full_1 a b := proj1 (Z_quot_exact_full a b).
+Definition ZO_div_exact_full_2 a b := proj2 (Z_quot_exact_full a b).
+Notation ZOmod_le := Zrem_le (only parsing).
+Notation ZOdiv_le_upper_bound := Zquot_le_upper_bound (only parsing).
+Notation ZOdiv_lt_upper_bound := Zquot_lt_upper_bound (only parsing).
+Notation ZOdiv_le_lower_bound := Zquot_le_lower_bound (only parsing).
+Notation ZOdiv_sgn := Zquot_sgn (only parsing).
+
+Notation ZO_mod_plus := Z_rem_plus (only parsing).
+Notation ZO_div_plus := Z_quot_plus (only parsing).
+Notation ZO_div_plus_l := Z_quot_plus_l (only parsing).
+Notation ZOdiv_mult_cancel_r := Zquot_mult_cancel_r (only parsing).
+Notation ZOdiv_mult_cancel_l := Zquot_mult_cancel_l (only parsing).
+Notation ZOmult_mod_distr_l := Zmult_rem_distr_l (only parsing).
+Notation ZOmult_mod_distr_r := Zmult_rem_distr_r (only parsing).
+Notation ZOmod_mod := Zrem_rem (only parsing).
+Notation ZOmult_mod := Zmult_rem (only parsing).
+Notation ZOplus_mod := Zplus_rem (only parsing).
+Notation ZOplus_mod_idemp_l := Zplus_rem_idemp_l (only parsing).
+Notation ZOplus_mod_idemp_r := Zplus_rem_idemp_r (only parsing).
+Notation ZOmult_mod_idemp_l := Zmult_rem_idemp_l (only parsing).
+Notation ZOmult_mod_idemp_r := Zmult_rem_idemp_r (only parsing).
+Notation ZOdiv_ZOdiv := Zquot_Zquot (only parsing).
+Notation ZOdiv_mult_le := Zquot_mult_le (only parsing).
+Notation ZOmod_divides := Zrem_divides (only parsing).
+
+Notation ZOdiv_eucl_Zdiv_eucl_pos := Zquotrem_Zdiv_eucl_pos (only parsing).
+Notation ZOdiv_Zdiv_pos := Zquot_Zdiv_pos (only parsing).
+Notation ZOmod_Zmod_pos := Zrem_Zmod_pos (only parsing).
+Notation ZOmod_Zmod_zero := Zrem_Zmod_zero (only parsing).
diff --git a/theories/ZArith/ZOdiv_def.v b/theories/ZArith/ZOdiv_def.v
new file mode 100644
index 00000000..38d25797
--- /dev/null
+++ b/theories/ZArith/ZOdiv_def.v
@@ -0,0 +1,15 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Import BinInt.
+
+Notation ZOdiv_eucl := Z.quotrem (only parsing).
+Notation ZOdiv := Z.quot (only parsing).
+Notation ZOmod := Z.rem (only parsing).
+
+Notation ZOdiv_eucl_correct := Z.quotrem_eq.
diff --git a/theories/ZArith/Zeven.v b/theories/ZArith/Zeven.v
index 550b66f7..f4d702b2 100644
--- a/theories/ZArith/Zeven.v
+++ b/theories/ZArith/Zeven.v
@@ -197,14 +197,12 @@ Qed.
Lemma Zquot2_quot n : Z.quot2 n = n ÷ 2.
Proof.
assert (AUX : forall m, 0 < m -> Z.quot2 m = m ÷ 2).
- BeginSubproof.
- intros m Hm.
+ { intros m Hm.
apply Z.quot_unique with (if Z.odd m then Z.sgn m else 0).
now apply Z.lt_le_incl.
rewrite Z.sgn_pos by trivial.
destruct (Z.odd m); now split.
- apply Zquot2_odd_eqn.
- EndSubproof.
+ apply Zquot2_odd_eqn. }
destruct (Z.lt_trichotomy 0 n) as [POS|[NUL|NEG]].
- now apply AUX.
- now subst.
diff --git a/theories/ZArith/vo.itarget b/theories/ZArith/vo.itarget
index 178111cd..88751cc0 100644
--- a/theories/ZArith/vo.itarget
+++ b/theories/ZArith/vo.itarget
@@ -23,6 +23,8 @@ Zmin.vo
Zmisc.vo
Znat.vo
Znumtheory.vo
+ZOdiv_def.vo
+ZOdiv.vo
Zquot.vo
Zorder.vo
Zpow_def.vo