diff options
author | Samuel Mimram <samuel.mimram@ens-lyon.org> | 2004-07-28 21:54:47 +0000 |
---|---|---|
committer | Samuel Mimram <samuel.mimram@ens-lyon.org> | 2004-07-28 21:54:47 +0000 |
commit | 6b649aba925b6f7462da07599fe67ebb12a3460e (patch) | |
tree | 43656bcaa51164548f3fa14e5b10de5ef1088574 /theories/ZArith/auxiliary.v |
Imported Upstream version 8.0pl1upstream/8.0pl1
Diffstat (limited to 'theories/ZArith/auxiliary.v')
-rw-r--r-- | theories/ZArith/auxiliary.v | 150 |
1 files changed, 150 insertions, 0 deletions
diff --git a/theories/ZArith/auxiliary.v b/theories/ZArith/auxiliary.v new file mode 100644 index 00000000..ecd2daab --- /dev/null +++ b/theories/ZArith/auxiliary.v @@ -0,0 +1,150 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: auxiliary.v,v 1.12.2.1 2004/07/16 19:31:22 herbelin Exp $ i*) + +(** Binary Integers (Pierre Crégut, CNET, Lannion, France) *) + +Require Export Arith. +Require Import BinInt. +Require Import Zorder. +Require Import Decidable. +Require Import Peano_dec. +Require Export Compare_dec. + +Open Local Scope Z_scope. + +(**********************************************************************) +(** Moving terms from one side to the other of an inequality *) + +Theorem Zne_left : forall n m:Z, Zne n m -> Zne (n + - m) 0. +Proof. +intros x y; unfold Zne in |- *; unfold not in |- *; intros H1 H2; apply H1; + apply Zplus_reg_l with (- y); rewrite Zplus_opp_l; + rewrite Zplus_comm; trivial with arith. +Qed. + +Theorem Zegal_left : forall n m:Z, n = m -> n + - m = 0. +Proof. +intros x y H; apply (Zplus_reg_l y); rewrite Zplus_permute; + rewrite Zplus_opp_r; do 2 rewrite Zplus_0_r; assumption. +Qed. + +Theorem Zle_left : forall n m:Z, n <= m -> 0 <= m + - n. +Proof. +intros x y H; replace 0 with (x + - x). +apply Zplus_le_compat_r; trivial. +apply Zplus_opp_r. +Qed. + +Theorem Zle_left_rev : forall n m:Z, 0 <= m + - n -> n <= m. +Proof. +intros x y H; apply Zplus_le_reg_r with (- x). +rewrite Zplus_opp_r; trivial. +Qed. + +Theorem Zlt_left_rev : forall n m:Z, 0 < m + - n -> n < m. +Proof. +intros x y H; apply Zplus_lt_reg_r with (- x). +rewrite Zplus_opp_r; trivial. +Qed. + +Theorem Zlt_left : forall n m:Z, n < m -> 0 <= m + -1 + - n. +Proof. +intros x y H; apply Zle_left; apply Zsucc_le_reg; + change (Zsucc x <= Zsucc (Zpred y)) in |- *; rewrite <- Zsucc_pred; + apply Zlt_le_succ; assumption. +Qed. + +Theorem Zlt_left_lt : forall n m:Z, n < m -> 0 < m + - n. +Proof. +intros x y H; replace 0 with (x + - x). +apply Zplus_lt_compat_r; trivial. +apply Zplus_opp_r. +Qed. + +Theorem Zge_left : forall n m:Z, n >= m -> 0 <= n + - m. +Proof. +intros x y H; apply Zle_left; apply Zge_le; assumption. +Qed. + +Theorem Zgt_left : forall n m:Z, n > m -> 0 <= n + -1 + - m. +Proof. +intros x y H; apply Zlt_left; apply Zgt_lt; assumption. +Qed. + +Theorem Zgt_left_gt : forall n m:Z, n > m -> n + - m > 0. +Proof. +intros x y H; replace 0 with (y + - y). +apply Zplus_gt_compat_r; trivial. +apply Zplus_opp_r. +Qed. + +Theorem Zgt_left_rev : forall n m:Z, n + - m > 0 -> n > m. +Proof. +intros x y H; apply Zplus_gt_reg_r with (- y). +rewrite Zplus_opp_r; trivial. +Qed. + +(**********************************************************************) +(** Factorization lemmas *) + +Theorem Zred_factor0 : forall n:Z, n = n * 1. +intro x; rewrite (Zmult_1_r x); reflexivity. +Qed. + +Theorem Zred_factor1 : forall n:Z, n + n = n * 2. +Proof. +exact Zplus_diag_eq_mult_2. +Qed. + +Theorem Zred_factor2 : forall n m:Z, n + n * m = n * (1 + m). + +intros x y; pattern x at 1 in |- *; rewrite <- (Zmult_1_r x); + rewrite <- Zmult_plus_distr_r; trivial with arith. +Qed. + +Theorem Zred_factor3 : forall n m:Z, n * m + n = n * (1 + m). + +intros x y; pattern x at 2 in |- *; rewrite <- (Zmult_1_r x); + rewrite <- Zmult_plus_distr_r; rewrite Zplus_comm; + trivial with arith. +Qed. +Theorem Zred_factor4 : forall n m p:Z, n * m + n * p = n * (m + p). +intros x y z; symmetry in |- *; apply Zmult_plus_distr_r. +Qed. + +Theorem Zred_factor5 : forall n m:Z, n * 0 + m = m. + +intros x y; rewrite <- Zmult_0_r_reverse; auto with arith. +Qed. + +Theorem Zred_factor6 : forall n:Z, n = n + 0. + +intro; rewrite Zplus_0_r; trivial with arith. +Qed. + +Theorem Zle_mult_approx : + forall n m p:Z, n > 0 -> p > 0 -> 0 <= m -> 0 <= m * n + p. + +intros x y z H1 H2 H3; apply Zle_trans with (m := y * x); + [ apply Zmult_gt_0_le_0_compat; assumption + | pattern (y * x) at 1 in |- *; rewrite <- Zplus_0_r; + apply Zplus_le_compat_l; apply Zlt_le_weak; apply Zgt_lt; + assumption ]. +Qed. + +Theorem Zmult_le_approx : + forall n m p:Z, n > 0 -> n > p -> 0 <= m * n + p -> 0 <= m. + +intros x y z H1 H2 H3; apply Zlt_succ_le; apply Zmult_gt_0_lt_0_reg_r with x; + [ assumption + | apply Zle_lt_trans with (1 := H3); rewrite <- Zmult_succ_l_reverse; + apply Zplus_lt_compat_l; apply Zgt_lt; assumption ]. + +Qed. |