summaryrefslogtreecommitdiff
path: root/theories/ZArith/Zsqrt.v
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2012-01-12 16:02:20 +0100
committerGravatar Stephane Glondu <steph@glondu.net>2012-01-12 16:02:20 +0100
commit97fefe1fcca363a1317e066e7f4b99b9c1e9987b (patch)
tree97ec6b7d831cc5fb66328b0c63a11db1cbb2f158 /theories/ZArith/Zsqrt.v
parent300293c119981054c95182a90c829058530a6b6f (diff)
Imported Upstream version 8.4~betaupstream/8.4_beta
Diffstat (limited to 'theories/ZArith/Zsqrt.v')
-rw-r--r--theories/ZArith/Zsqrt.v215
1 files changed, 0 insertions, 215 deletions
diff --git a/theories/ZArith/Zsqrt.v b/theories/ZArith/Zsqrt.v
deleted file mode 100644
index 1a67bbb2..00000000
--- a/theories/ZArith/Zsqrt.v
+++ /dev/null
@@ -1,215 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* $Id: Zsqrt.v 14641 2011-11-06 11:59:10Z herbelin $ *)
-
-Require Import ZArithRing.
-Require Import Omega.
-Require Export ZArith_base.
-Open Local Scope Z_scope.
-
-(**********************************************************************)
-(** Definition and properties of square root on Z *)
-
-(** The following tactic replaces all instances of (POS (xI ...)) by
- `2*(POS ...)+1`, but only when ... is not made only with xO, XI, or xH. *)
-Ltac compute_POS :=
- match goal with
- | |- context [(Zpos (xI ?X1))] =>
- match constr:X1 with
- | context [1%positive] => fail 1
- | _ => rewrite (BinInt.Zpos_xI X1)
- end
- | |- context [(Zpos (xO ?X1))] =>
- match constr:X1 with
- | context [1%positive] => fail 1
- | _ => rewrite (BinInt.Zpos_xO X1)
- end
- end.
-
-Inductive sqrt_data (n:Z) : Set :=
- c_sqrt : forall s r:Z, n = s * s + r -> 0 <= r <= 2 * s -> sqrt_data n.
-
-Definition sqrtrempos : forall p:positive, sqrt_data (Zpos p).
- refine
- (fix sqrtrempos (p:positive) : sqrt_data (Zpos p) :=
- match p return sqrt_data (Zpos p) with
- | xH => c_sqrt 1 1 0 _ _
- | xO xH => c_sqrt 2 1 1 _ _
- | xI xH => c_sqrt 3 1 2 _ _
- | xO (xO p') =>
- match sqrtrempos p' with
- | c_sqrt s' r' Heq Hint =>
- match Z_le_gt_dec (4 * s' + 1) (4 * r') with
- | left Hle =>
- c_sqrt (Zpos (xO (xO p'))) (2 * s' + 1)
- (4 * r' - (4 * s' + 1)) _ _
- | right Hgt => c_sqrt (Zpos (xO (xO p'))) (2 * s') (4 * r') _ _
- end
- end
- | xO (xI p') =>
- match sqrtrempos p' with
- | c_sqrt s' r' Heq Hint =>
- match Z_le_gt_dec (4 * s' + 1) (4 * r' + 2) with
- | left Hle =>
- c_sqrt (Zpos (xO (xI p'))) (2 * s' + 1)
- (4 * r' + 2 - (4 * s' + 1)) _ _
- | right Hgt =>
- c_sqrt (Zpos (xO (xI p'))) (2 * s') (4 * r' + 2) _ _
- end
- end
- | xI (xO p') =>
- match sqrtrempos p' with
- | c_sqrt s' r' Heq Hint =>
- match Z_le_gt_dec (4 * s' + 1) (4 * r' + 1) with
- | left Hle =>
- c_sqrt (Zpos (xI (xO p'))) (2 * s' + 1)
- (4 * r' + 1 - (4 * s' + 1)) _ _
- | right Hgt =>
- c_sqrt (Zpos (xI (xO p'))) (2 * s') (4 * r' + 1) _ _
- end
- end
- | xI (xI p') =>
- match sqrtrempos p' with
- | c_sqrt s' r' Heq Hint =>
- match Z_le_gt_dec (4 * s' + 1) (4 * r' + 3) with
- | left Hle =>
- c_sqrt (Zpos (xI (xI p'))) (2 * s' + 1)
- (4 * r' + 3 - (4 * s' + 1)) _ _
- | right Hgt =>
- c_sqrt (Zpos (xI (xI p'))) (2 * s') (4 * r' + 3) _ _
- end
- end
- end); clear sqrtrempos; repeat compute_POS;
- try (try rewrite Heq; ring); try omega.
-Defined.
-
-(** Define with integer input, but with a strong (readable) specification. *)
-Definition Zsqrt :
- forall x:Z,
- 0 <= x ->
- {s : Z & {r : Z | x = s * s + r /\ s * s <= x < (s + 1) * (s + 1)}}.
- refine
- (fun x =>
- match
- x
- return
- 0 <= x ->
- {s : Z & {r : Z | x = s * s + r /\ s * s <= x < (s + 1) * (s + 1)}}
- with
- | Zpos p =>
- fun h =>
- match sqrtrempos p with
- | c_sqrt s r Heq Hint =>
- existS
- (fun s:Z =>
- {r : Z |
- Zpos p = s * s + r /\ s * s <= Zpos p < (s + 1) * (s + 1)})
- s
- (exist
- (fun r:Z =>
- Zpos p = s * s + r /\
- s * s <= Zpos p < (s + 1) * (s + 1)) r _)
- end
- | Zneg p =>
- fun h =>
- False_rec
- {s : Z &
- {r : Z |
- Zneg p = s * s + r /\ s * s <= Zneg p < (s + 1) * (s + 1)}}
- (h (refl_equal Datatypes.Gt))
- | Z0 =>
- fun h =>
- existS
- (fun s:Z =>
- {r : Z | 0 = s * s + r /\ s * s <= 0 < (s + 1) * (s + 1)}) 0
- (exist
- (fun r:Z => 0 = 0 * 0 + r /\ 0 * 0 <= 0 < (0 + 1) * (0 + 1)) 0
- _)
- end); try omega.
- split; [ omega | rewrite Heq; ring_simplify (s*s) ((s + 1) * (s + 1)); omega ].
-Defined.
-
-(** Define a function of type Z->Z that computes the integer square root,
- but only for positive numbers, and 0 for others. *)
-Definition Zsqrt_plain (x:Z) : Z :=
- match x with
- | Zpos p =>
- match Zsqrt (Zpos p) (Zorder.Zle_0_pos p) with
- | existS s _ => s
- end
- | Zneg p => 0
- | Z0 => 0
- end.
-
-(** A basic theorem about Zsqrt_plain *)
-
-Theorem Zsqrt_interval :
- forall n:Z,
- 0 <= n ->
- Zsqrt_plain n * Zsqrt_plain n <= n <
- (Zsqrt_plain n + 1) * (Zsqrt_plain n + 1).
-Proof.
- intros x; case x.
- unfold Zsqrt_plain in |- *; omega.
- intros p; unfold Zsqrt_plain in |- *;
- case (Zsqrt (Zpos p) (Zorder.Zle_0_pos p)).
- intros s [r [Heq Hint]] Hle; assumption.
- intros p Hle; elim Hle; auto.
-Qed.
-
-(** Positivity *)
-
-Theorem Zsqrt_plain_is_pos: forall n, 0 <= n -> 0 <= Zsqrt_plain n.
-Proof.
- intros n m; case (Zsqrt_interval n); auto with zarith.
- intros H1 H2; case (Zle_or_lt 0 (Zsqrt_plain n)); auto.
- intros H3; contradict H2; auto; apply Zle_not_lt.
- apply Zle_trans with ( 2 := H1 ).
- replace ((Zsqrt_plain n + 1) * (Zsqrt_plain n + 1))
- with (Zsqrt_plain n * Zsqrt_plain n + (2 * Zsqrt_plain n + 1));
- auto with zarith.
- ring.
-Qed.
-
-(** Direct correctness on squares. *)
-
-Theorem Zsqrt_square_id: forall a, 0 <= a -> Zsqrt_plain (a * a) = a.
-Proof.
- intros a H.
- generalize (Zsqrt_plain_is_pos (a * a)); auto with zarith; intros Haa.
- case (Zsqrt_interval (a * a)); auto with zarith.
- intros H1 H2.
- case (Zle_or_lt a (Zsqrt_plain (a * a))); intros H3; auto.
- case Zle_lt_or_eq with (1:=H3); auto; clear H3; intros H3.
- contradict H1; auto; apply Zlt_not_le; auto with zarith.
- apply Zle_lt_trans with (a * Zsqrt_plain (a * a)); auto with zarith.
- apply Zmult_lt_compat_r; auto with zarith.
- contradict H2; auto; apply Zle_not_lt; auto with zarith.
- apply Zmult_le_compat; auto with zarith.
-Qed.
-
-(** [Zsqrt_plain] is increasing *)
-
-Theorem Zsqrt_le:
- forall p q, 0 <= p <= q -> Zsqrt_plain p <= Zsqrt_plain q.
-Proof.
- intros p q [H1 H2]; case Zle_lt_or_eq with (1:=H2); clear H2; intros H2;
- [ | subst q; auto with zarith].
- case (Zle_or_lt (Zsqrt_plain p) (Zsqrt_plain q)); auto; intros H3.
- assert (Hp: (0 <= Zsqrt_plain q)).
- apply Zsqrt_plain_is_pos; auto with zarith.
- absurd (q <= p); auto with zarith.
- apply Zle_trans with ((Zsqrt_plain q + 1) * (Zsqrt_plain q + 1)).
- case (Zsqrt_interval q); auto with zarith.
- apply Zle_trans with (Zsqrt_plain p * Zsqrt_plain p); auto with zarith.
- apply Zmult_le_compat; auto with zarith.
- case (Zsqrt_interval p); auto with zarith.
-Qed.
-
-