summaryrefslogtreecommitdiff
path: root/theories/ZArith/Zpow_facts.v
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2010-07-21 09:46:51 +0200
committerGravatar Stephane Glondu <steph@glondu.net>2010-07-21 09:46:51 +0200
commit5b7eafd0f00a16d78f99a27f5c7d5a0de77dc7e6 (patch)
tree631ad791a7685edafeb1fb2e8faeedc8379318ae /theories/ZArith/Zpow_facts.v
parentda178a880e3ace820b41d38b191d3785b82991f5 (diff)
Imported Upstream snapshot 8.3~beta0+13298
Diffstat (limited to 'theories/ZArith/Zpow_facts.v')
-rw-r--r--theories/ZArith/Zpow_facts.v66
1 files changed, 33 insertions, 33 deletions
diff --git a/theories/ZArith/Zpow_facts.v b/theories/ZArith/Zpow_facts.v
index 3d4d235a..1d9b3dfc 100644
--- a/theories/ZArith/Zpow_facts.v
+++ b/theories/ZArith/Zpow_facts.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Zpow_facts.v 11098 2008-06-11 09:16:22Z letouzey $ i*)
+(*i $Id$ i*)
Require Import ZArith_base.
Require Import ZArithRing.
@@ -37,7 +37,7 @@ Proof.
Qed.
Lemma Zpower_pos_0_l: forall p, Zpower_pos 0 p = 0.
-Proof.
+Proof.
induction p.
change (xI p) with (1 + (xO p))%positive.
rewrite Zpower_pos_is_exp, Zpower_pos_1_r; auto.
@@ -133,7 +133,7 @@ Proof.
apply Zle_ge; replace 0 with (0 * r1); try apply Zmult_le_compat_r; auto.
Qed.
-Theorem Zpower_le_monotone: forall a b c,
+Theorem Zpower_le_monotone: forall a b c,
0 < a -> 0 <= b <= c -> a^b <= a^c.
Proof.
intros a b c H (H1, H2).
@@ -145,7 +145,7 @@ Proof.
apply Zlt_le_weak; apply Zpower_gt_0; auto with zarith.
Qed.
-Theorem Zpower_lt_monotone: forall a b c,
+Theorem Zpower_lt_monotone: forall a b c,
1 < a -> 0 <= b < c -> a^b < a^c.
Proof.
intros a b c H (H1, H2).
@@ -160,7 +160,7 @@ Proof.
apply Zpower_le_monotone; auto with zarith.
Qed.
-Theorem Zpower_gt_1 : forall x y,
+Theorem Zpower_gt_1 : forall x y,
1 < x -> 0 < y -> 1 < x^y.
Proof.
intros x y H1 H2.
@@ -168,14 +168,14 @@ Proof.
apply Zpower_lt_monotone; auto with zarith.
Qed.
-Theorem Zpower_ge_0: forall x y, 0 <= x -> 0 <= x^y.
+Theorem Zpower_ge_0: forall x y, 0 <= x -> 0 <= x^y.
Proof.
intros x y; case y; auto with zarith.
simpl ; auto with zarith.
intros p H1; assert (H: 0 <= Zpos p); auto with zarith.
generalize H; pattern (Zpos p); apply natlike_ind; auto with zarith.
- intros p1 H2 H3 _; unfold Zsucc; rewrite Zpower_exp; simpl; auto with zarith.
- apply Zmult_le_0_compat; auto with zarith.
+ intros p1 H2 H3 _; unfold Zsucc; rewrite Zpower_exp; simpl; auto with zarith.
+ apply Zmult_le_0_compat; auto with zarith.
generalize H1; case x; compute; intros; auto; try discriminate.
Qed.
@@ -195,7 +195,7 @@ Proof.
destruct b;trivial;unfold Zgt in z;discriminate z.
Qed.
-Theorem Zmult_power: forall p q r, 0 <= r ->
+Theorem Zmult_power: forall p q r, 0 <= r ->
(p*q)^r = p^r * q^r.
Proof.
intros p q r H1; generalize H1; pattern r; apply natlike_ind; auto.
@@ -206,7 +206,7 @@ Qed.
Hint Resolve Zpower_ge_0 Zpower_gt_0: zarith.
-Theorem Zpower_le_monotone3: forall a b c,
+Theorem Zpower_le_monotone3: forall a b c,
0 <= c -> 0 <= a <= b -> a^c <= b^c.
Proof.
intros a b c H (H1, H2).
@@ -216,7 +216,7 @@ Proof.
apply Zle_trans with (a^x * b); auto with zarith.
Qed.
-Lemma Zpower_le_monotone_inv: forall a b c,
+Lemma Zpower_le_monotone_inv: forall a b c,
1 < a -> 0 < b -> a^b <= a^c -> b <= c.
Proof.
intros a b c H H0 H1.
@@ -227,14 +227,14 @@ Proof.
apply Zpower_le_monotone;auto with zarith.
apply Zpower_le_monotone3;auto with zarith.
assert (c > 0).
- destruct (Z_le_gt_dec 0 c);trivial.
+ destruct (Z_le_gt_dec 0 c);trivial.
destruct (Zle_lt_or_eq _ _ z0);auto with zarith.
- rewrite <- H3 in H1;simpl in H1; elimtype False;omega.
- destruct c;try discriminate z0. simpl in H1. elimtype False;omega.
- assert (H4 := Zpower_lt_monotone a c b H). elimtype False;omega.
+ rewrite <- H3 in H1;simpl in H1; exfalso;omega.
+ destruct c;try discriminate z0. simpl in H1. exfalso;omega.
+ assert (H4 := Zpower_lt_monotone a c b H). exfalso;omega.
Qed.
-Theorem Zpower_nat_Zpower: forall p q, 0 <= q ->
+Theorem Zpower_nat_Zpower: forall p q, 0 <= q ->
p^q = Zpower_nat p (Zabs_nat q).
Proof.
intros p1 q1; case q1; simpl.
@@ -262,7 +262,7 @@ Proof.
intros; apply Zlt_le_weak; apply Zpower2_lt_lin; auto.
Qed.
-Lemma Zpower2_Psize :
+Lemma Zpower2_Psize :
forall n p, Zpos p < 2^(Z_of_nat n) <-> (Psize p <= n)%nat.
Proof.
induction n.
@@ -294,7 +294,7 @@ Qed.
(** A direct way to compute Zpower modulo **)
-Fixpoint Zpow_mod_pos (a: Z)(m: positive)(n : Z) {struct m} : Z :=
+Fixpoint Zpow_mod_pos (a: Z)(m: positive)(n : Z) : Z :=
match m with
| xH => a mod n
| xO m' =>
@@ -311,14 +311,14 @@ Fixpoint Zpow_mod_pos (a: Z)(m: positive)(n : Z) {struct m} : Z :=
end
end.
-Definition Zpow_mod a m n :=
- match m with
- | 0 => 1
- | Zpos p => Zpow_mod_pos a p n
- | Zneg p => 0
+Definition Zpow_mod a m n :=
+ match m with
+ | 0 => 1
+ | Zpos p => Zpow_mod_pos a p n
+ | Zneg p => 0
end.
-Theorem Zpow_mod_pos_correct: forall a m n, 0 < n ->
+Theorem Zpow_mod_pos_correct: forall a m n, 0 < n ->
Zpow_mod_pos a m n = (Zpower_pos a m) mod n.
Proof.
intros a m; elim m; simpl; auto.
@@ -327,12 +327,12 @@ Proof.
repeat rewrite Rec; auto.
rewrite Zpower_pos_1_r.
repeat rewrite (fun x => (Zmult_mod x a)); auto with zarith.
- rewrite (Zmult_mod (Zpower_pos a p)); auto with zarith.
+ rewrite (Zmult_mod (Zpower_pos a p)); auto with zarith.
case (Zpower_pos a p mod n); auto.
intros p Rec n H1; rewrite <- Pplus_diag; auto.
repeat rewrite Zpower_pos_is_exp; auto.
repeat rewrite Rec; auto.
- rewrite (Zmult_mod (Zpower_pos a p)); auto with zarith.
+ rewrite (Zmult_mod (Zpower_pos a p)); auto with zarith.
case (Zpower_pos a p mod n); auto.
unfold Zpower_pos; simpl; rewrite Zmult_1_r; auto with zarith.
Qed.
@@ -354,7 +354,7 @@ Proof.
pattern p at 3; rewrite <- (Zpower_1_r p); rewrite <- Zpower_exp; try f_equal; auto with zarith.
Qed.
-Theorem rel_prime_Zpower_r: forall i p q, 0 < i ->
+Theorem rel_prime_Zpower_r: forall i p q, 0 < i ->
rel_prime p q -> rel_prime p (q^i).
Proof.
intros i p q Hi Hpq; generalize Hi; pattern i; apply natlike_ind; auto with zarith; clear i Hi.
@@ -365,7 +365,7 @@ Proof.
rewrite Zpower_0_r; apply rel_prime_sym; apply rel_prime_1.
Qed.
-Theorem rel_prime_Zpower: forall i j p q, 0 <= i -> 0 <= j ->
+Theorem rel_prime_Zpower: forall i j p q, 0 <= i -> 0 <= j ->
rel_prime p q -> rel_prime (p^i) (q^j).
Proof.
intros i j p q Hi; generalize Hi j p q; pattern i; apply natlike_ind; auto with zarith; clear i Hi j p q.
@@ -379,7 +379,7 @@ Proof.
rewrite Zpower_0_r; apply rel_prime_sym; apply rel_prime_1.
Qed.
-Theorem prime_power_prime: forall p q n, 0 <= n ->
+Theorem prime_power_prime: forall p q n, 0 <= n ->
prime p -> prime q -> (p | q^n) -> p = q.
Proof.
intros p q n Hn Hp Hq; pattern n; apply natlike_ind; auto; clear n Hn.
@@ -442,15 +442,15 @@ Fixpoint Psquare (p: positive): positive :=
end.
Definition Zsquare p :=
- match p with
- | Z0 => Z0
- | Zpos p => Zpos (Psquare p)
+ match p with
+ | Z0 => Z0
+ | Zpos p => Zpos (Psquare p)
| Zneg p => Zpos (Psquare p)
end.
Theorem Psquare_correct: forall p, Psquare p = (p * p)%positive.
Proof.
- induction p; simpl; auto; f_equal; rewrite IHp.
+ induction p; simpl; auto; f_equal; rewrite IHp.
apply trans_equal with (xO p + xO (p*p))%positive; auto.
rewrite (Pplus_comm (xO p)); auto.
rewrite Pmult_xI_permute_r; rewrite Pplus_assoc.