summaryrefslogtreecommitdiff
path: root/theories/ZArith/Znumtheory.v
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <smimram@debian.org>2006-04-28 14:59:16 +0000
committerGravatar Samuel Mimram <smimram@debian.org>2006-04-28 14:59:16 +0000
commit3ef7797ef6fc605dfafb32523261fe1b023aeecb (patch)
treead89c6bb57ceee608fcba2bb3435b74e0f57919e /theories/ZArith/Znumtheory.v
parent018ee3b0c2be79eb81b1f65c3f3fa142d24129c8 (diff)
Imported Upstream version 8.0pl3+8.1alphaupstream/8.0pl3+8.1alpha
Diffstat (limited to 'theories/ZArith/Znumtheory.v')
-rw-r--r--theories/ZArith/Znumtheory.v19
1 files changed, 9 insertions, 10 deletions
diff --git a/theories/ZArith/Znumtheory.v b/theories/ZArith/Znumtheory.v
index 715cdc7d..a1963446 100644
--- a/theories/ZArith/Znumtheory.v
+++ b/theories/ZArith/Znumtheory.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Znumtheory.v,v 1.5.2.1 2004/07/16 19:31:22 herbelin Exp $ i*)
+(*i $Id: Znumtheory.v 6984 2005-05-02 10:50:15Z herbelin $ i*)
Require Import ZArith_base.
Require Import ZArithRing.
@@ -278,12 +278,12 @@ Lemma euclid_rec :
(forall d:Z, Zis_gcd u3 v3 d -> Zis_gcd a b d) -> Euclid.
Proof.
intros v3 Hv3; generalize Hv3; pattern v3 in |- *.
-apply Z_lt_rec.
+apply Zlt_0_rec.
clear v3 Hv3; intros.
elim (Z_zerop x); intro.
apply Euclid_intro with (u := u1) (v := u2) (d := u3).
assumption.
-apply H2.
+apply H3.
rewrite a0; auto with zarith.
set (q := u3 / x) in *.
assert (Hq : 0 <= u3 - q * x < x).
@@ -297,9 +297,9 @@ apply (H (u3 - q * x) Hq (proj1 Hq) v1 v2 x (u1 - q * v1) (u2 - q * v2)).
tauto.
replace ((u1 - q * v1) * a + (u2 - q * v2) * b) with
(u1 * a + u2 * b - q * (v1 * a + v2 * b)).
-rewrite H0; rewrite H1; trivial.
+rewrite H1; rewrite H2; trivial.
ring.
-intros; apply H2.
+intros; apply H3.
apply Zis_gcd_for_euclid with q; assumption.
assumption.
Qed.
@@ -377,11 +377,11 @@ Definition Zgcd_pos :
Proof.
intros a Ha.
apply
- (Z_lt_rec
+ (Zlt_0_rec
(fun a:Z => forall b:Z, {g : Z | 0 <= a -> Zis_gcd a b g /\ g >= 0}));
try assumption.
intro x; case x.
-intros _ b; exists (Zabs b).
+intros _ _ b; exists (Zabs b).
elim (Z_le_lt_eq_dec _ _ (Zabs_pos b)).
intros H0; split.
apply Zabs_ind.
@@ -393,7 +393,7 @@ intros _ b; exists (Zabs b).
rewrite <- (Zabs_Zsgn b); rewrite <- H0; simpl in |- *.
split; [ apply Zis_gcd_0 | idtac ]; auto with zarith.
-intros p Hrec b.
+intros p Hrec _ b.
generalize (Z_div_mod b (Zpos p)).
case (Zdiv_eucl b (Zpos p)); intros q r Hqr.
elim Hqr; clear Hqr; intros; auto with zarith.
@@ -405,8 +405,7 @@ split; auto.
rewrite H.
apply Zis_gcd_for_euclid2; auto.
-intros p Hrec b.
-exists 0; intros.
+intros p _ H b.
elim H; auto.
Defined.