diff options
author | Stephane Glondu <steph@glondu.net> | 2012-08-20 18:27:01 +0200 |
---|---|---|
committer | Stephane Glondu <steph@glondu.net> | 2012-08-20 18:27:01 +0200 |
commit | e0d682ec25282a348d35c5b169abafec48555690 (patch) | |
tree | 1a46f0142a85df553388c932110793881f3af52f /theories/ZArith/Zmax.v | |
parent | 86535d84cc3cffeee1dcd8545343f234e7285530 (diff) |
Imported Upstream version 8.4dfsgupstream/8.4dfsg
Diffstat (limited to 'theories/ZArith/Zmax.v')
-rw-r--r-- | theories/ZArith/Zmax.v | 121 |
1 files changed, 35 insertions, 86 deletions
diff --git a/theories/ZArith/Zmax.v b/theories/ZArith/Zmax.v index 999564f0..31880c17 100644 --- a/theories/ZArith/Zmax.v +++ b/theories/ZArith/Zmax.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -12,12 +12,38 @@ Require Export BinInt Zcompare Zorder. Local Open Scope Z_scope. -(** Definition [Zmax] is now [BinInt.Z.max]. *) - -(** * Characterization of maximum on binary integer numbers *) - -Definition Zmax_case := Z.max_case. -Definition Zmax_case_strong := Z.max_case_strong. +(** Definition [Z.max] is now [BinInt.Z.max]. *) + +(** Exact compatibility *) + +Notation Zmax_case := Z.max_case (compat "8.3"). +Notation Zmax_case_strong := Z.max_case_strong (compat "8.3"). +Notation Zmax_right := Z.max_r (compat "8.3"). +Notation Zle_max_l := Z.le_max_l (compat "8.3"). +Notation Zle_max_r := Z.le_max_r (compat "8.3"). +Notation Zmax_lub := Z.max_lub (compat "8.3"). +Notation Zmax_lub_lt := Z.max_lub_lt (compat "8.3"). +Notation Zle_max_compat_r := Z.max_le_compat_r (compat "8.3"). +Notation Zle_max_compat_l := Z.max_le_compat_l (compat "8.3"). +Notation Zmax_idempotent := Z.max_id (compat "8.3"). +Notation Zmax_n_n := Z.max_id (compat "8.3"). +Notation Zmax_comm := Z.max_comm (compat "8.3"). +Notation Zmax_assoc := Z.max_assoc (compat "8.3"). +Notation Zmax_irreducible_dec := Z.max_dec (compat "8.3"). +Notation Zmax_le_prime := Z.max_le (compat "8.3"). +Notation Zsucc_max_distr := Z.succ_max_distr (compat "8.3"). +Notation Zmax_SS := Z.succ_max_distr (compat "8.3"). +Notation Zplus_max_distr_l := Z.add_max_distr_l (compat "8.3"). +Notation Zplus_max_distr_r := Z.add_max_distr_r (compat "8.3"). +Notation Zmax_plus := Z.add_max_distr_r (compat "8.3"). +Notation Zmax1 := Z.le_max_l (compat "8.3"). +Notation Zmax2 := Z.le_max_r (compat "8.3"). +Notation Zmax_irreducible_inf := Z.max_dec (compat "8.3"). +Notation Zmax_le_prime_inf := Z.max_le (compat "8.3"). +Notation Zpos_max := Pos2Z.inj_max (compat "8.3"). +Notation Zpos_minus := Pos2Z.inj_sub_max (compat "8.3"). + +(** Slightly different lemmas *) Lemma Zmax_spec x y : x >= y /\ Z.max x y = x \/ x < y /\ Z.max x y = y. @@ -26,86 +52,9 @@ Proof. Qed. Lemma Zmax_left n m : n>=m -> Z.max n m = n. -Proof. Z.swap_greater. apply Zmax_l. Qed. - -Lemma Zmax_right : forall n m, n<=m -> Z.max n m = m. Proof Zmax_r. - -(** * Least upper bound properties of max *) - -Lemma Zle_max_l : forall n m, n <= Z.max n m. Proof Z.le_max_l. -Lemma Zle_max_r : forall n m, m <= Z.max n m. Proof Z.le_max_r. - -Lemma Zmax_lub : forall n m p, n <= p -> m <= p -> Z.max n m <= p. -Proof Z.max_lub. - -Lemma Zmax_lub_lt : forall n m p:Z, n < p -> m < p -> Z.max n m < p. -Proof Z.max_lub_lt. - - -(** * Compatibility with order *) - -Lemma Zle_max_compat_r : forall n m p, n <= m -> Z.max n p <= Z.max m p. -Proof Z.max_le_compat_r. - -Lemma Zle_max_compat_l : forall n m p, n <= m -> Z.max p n <= Z.max p m. -Proof Z.max_le_compat_l. - - -(** * Semi-lattice properties of max *) - -Lemma Zmax_idempotent : forall n, Z.max n n = n. Proof Z.max_id. -Lemma Zmax_comm : forall n m, Z.max n m = Z.max m n. Proof Z.max_comm. -Lemma Zmax_assoc : forall n m p, Z.max n (Z.max m p) = Z.max (Z.max n m) p. -Proof Z.max_assoc. - -(** * Additional properties of max *) - -Lemma Zmax_irreducible_dec : forall n m, {Z.max n m = n} + {Z.max n m = m}. -Proof Z.max_dec. +Proof. Z.swap_greater. apply Z.max_l. Qed. -Lemma Zmax_le_prime : forall n m p, p <= Z.max n m -> p <= n \/ p <= m. -Proof Z.max_le. - - -(** * Operations preserving max *) - -Lemma Zsucc_max_distr : - forall n m, Z.succ (Z.max n m) = Z.max (Z.succ n) (Z.succ m). -Proof Z.succ_max_distr. - -Lemma Zplus_max_distr_l : forall n m p, Z.max (p + n) (p + m) = p + Z.max n m. -Proof Z.add_max_distr_l. - -Lemma Zplus_max_distr_r : forall n m p, Z.max (n + p) (m + p) = Z.max n m + p. -Proof Z.add_max_distr_r. - -(** * Maximum and Zpos *) - -Lemma Zpos_max p q : Zpos (Pos.max p q) = Z.max (Zpos p) (Zpos q). -Proof. - unfold Zmax, Pmax. simpl. - case Pos.compare_spec; auto; congruence. -Qed. - -Lemma Zpos_max_1 p : Z.max 1 (Zpos p) = Zpos p. +Lemma Zpos_max_1 p : Z.max 1 (Z.pos p) = Z.pos p. Proof. now destruct p. Qed. - -(** * Characterization of Pos.sub in term of Z.sub and Z.max *) - -Lemma Zpos_minus p q : Zpos (p - q) = Z.max 1 (Zpos p - Zpos q). -Proof. - simpl. rewrite Z.pos_sub_spec. case Pos.compare_spec; intros H. - subst; now rewrite Pos.sub_diag. - now rewrite Pos.sub_lt. - symmetry. apply Zpos_max_1. -Qed. - -(* begin hide *) -(* Compatibility *) -Notation Zmax1 := Z.le_max_l (only parsing). -Notation Zmax2 := Z.le_max_r (only parsing). -Notation Zmax_irreducible_inf := Z.max_dec (only parsing). -Notation Zmax_le_prime_inf := Z.max_le (only parsing). -(* end hide *) |