diff options
author | Stephane Glondu <steph@glondu.net> | 2012-01-12 16:02:20 +0100 |
---|---|---|
committer | Stephane Glondu <steph@glondu.net> | 2012-01-12 16:02:20 +0100 |
commit | 97fefe1fcca363a1317e066e7f4b99b9c1e9987b (patch) | |
tree | 97ec6b7d831cc5fb66328b0c63a11db1cbb2f158 /theories/ZArith/Zcompare.v | |
parent | 300293c119981054c95182a90c829058530a6b6f (diff) |
Imported Upstream version 8.4~betaupstream/8.4_beta
Diffstat (limited to 'theories/ZArith/Zcompare.v')
-rw-r--r-- | theories/ZArith/Zcompare.v | 457 |
1 files changed, 66 insertions, 391 deletions
diff --git a/theories/ZArith/Zcompare.v b/theories/ZArith/Zcompare.v index ae5302ee..20e1b006 100644 --- a/theories/ZArith/Zcompare.v +++ b/theories/ZArith/Zcompare.v @@ -1,387 +1,91 @@ (* -*- coding: utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $$ i*) +(** Binary Integers : results about Zcompare *) +(** Initial author: Pierre Crégut (CNET, Lannion, France *) -(**********************************************************************) -(** Binary Integers (Pierre Crégut, CNET, Lannion, France) *) -(**********************************************************************) +(** THIS FILE IS DEPRECATED. + It is now almost entirely made of compatibility formulations + for results already present in BinInt.Z. *) -Require Export BinPos. -Require Export BinInt. -Require Import Lt. -Require Import Gt. -Require Import Plus. -Require Import Mult. +Require Export BinPos BinInt. +Require Import Lt Gt Plus Mult. (* Useless now, for compatibility only *) -Open Local Scope Z_scope. +Local Open Scope Z_scope. (***************************) (** * Comparison on integers *) -Lemma Zcompare_refl : forall n:Z, (n ?= n) = Eq. -Proof. - intro x; destruct x as [| p| p]; simpl in |- *; - [ reflexivity | apply Pcompare_refl | rewrite Pcompare_refl; reflexivity ]. -Qed. - -Lemma Zcompare_Eq_eq : forall n m:Z, (n ?= m) = Eq -> n = m. -Proof. - intros x y; destruct x as [| x'| x']; destruct y as [| y'| y']; simpl in |- *; - intro H; reflexivity || (try discriminate H); - [ rewrite (Pcompare_Eq_eq x' y' H); reflexivity - | rewrite (Pcompare_Eq_eq x' y'); - [ reflexivity - | destruct ((x' ?= y')%positive Eq); reflexivity || discriminate ] ]. -Qed. - -Ltac destr_zcompare := - match goal with |- context [Zcompare ?x ?y] => - let H := fresh "H" in - case_eq (Zcompare x y); intro H; - [generalize (Zcompare_Eq_eq _ _ H); clear H; intro H | - change (x<y)%Z in H | - change (x>y)%Z in H ] - end. - -Lemma Zcompare_Eq_iff_eq : forall n m:Z, (n ?= m) = Eq <-> n = m. -Proof. - intros x y; split; intro E; - [ apply Zcompare_Eq_eq; assumption | rewrite E; apply Zcompare_refl ]. -Qed. - -Lemma Zcompare_antisym : forall n m:Z, CompOpp (n ?= m) = (m ?= n). -Proof. - intros x y; destruct x; destruct y; simpl in |- *; - reflexivity || discriminate H || rewrite Pcompare_antisym; - reflexivity. -Qed. - Lemma Zcompare_Gt_Lt_antisym : forall n m:Z, (n ?= m) = Gt <-> (m ?= n) = Lt. -Proof. - intros x y. - rewrite <- Zcompare_antisym. change Gt with (CompOpp Lt). - split. - auto using CompOpp_inj. - intros; f_equal; auto. -Qed. - -Lemma Zcompare_spec : forall n m, CompSpec eq Zlt n m (n ?= m). -Proof. - intros. - destruct (n?=m) as [ ]_eqn:H; constructor; auto. - apply Zcompare_Eq_eq; auto. - red; rewrite <- Zcompare_antisym, H; auto. -Qed. +Proof Z.gt_lt_iff. +Lemma Zcompare_antisym n m : CompOpp (n ?= m) = (m ?= n). +Proof eq_sym (Z.compare_antisym n m). (** * Transitivity of comparison *) Lemma Zcompare_Lt_trans : forall n m p:Z, (n ?= m) = Lt -> (m ?= p) = Lt -> (n ?= p) = Lt. -Proof. - intros x y z; case x; case y; case z; simpl; - try discriminate; auto with arith. - intros; eapply Plt_trans; eauto. - intros p q r; rewrite 3 Pcompare_antisym; simpl. - intros; eapply Plt_trans; eauto. -Qed. +Proof Z.lt_trans. Lemma Zcompare_Gt_trans : forall n m p:Z, (n ?= m) = Gt -> (m ?= p) = Gt -> (n ?= p) = Gt. Proof. - intros n m p Hnm Hmp. - apply <- Zcompare_Gt_Lt_antisym. - apply -> Zcompare_Gt_Lt_antisym in Hnm. - apply -> Zcompare_Gt_Lt_antisym in Hmp. - eapply Zcompare_Lt_trans; eauto. + intros n m p. change (n > m -> m > p -> n > p). + Z.swap_greater. intros. now transitivity m. Qed. (** * Comparison and opposite *) -Lemma Zcompare_opp : forall n m:Z, (n ?= m) = (- m ?= - n). +Lemma Zcompare_opp n m : (n ?= m) = (- m ?= - n). Proof. - intros x y; case x; case y; simpl in |- *; auto with arith; intros; - rewrite <- ZC4; trivial with arith. + symmetry. apply Z.compare_opp. Qed. -Hint Local Resolve Pcompare_refl. - (** * Comparison first-order specification *) -Lemma Zcompare_Gt_spec : - forall n m:Z, (n ?= m) = Gt -> exists h : positive, n + - m = Zpos h. +Lemma Zcompare_Gt_spec n m : (n ?= m) = Gt -> exists h, n + - m = Zpos h. Proof. - intros x y; case x; case y; - [ simpl in |- *; intros H; discriminate H - | simpl in |- *; intros p H; discriminate H - | intros p H; exists p; simpl in |- *; auto with arith - | intros p H; exists p; simpl in |- *; auto with arith - | intros q p H; exists (p - q)%positive; unfold Zplus, Zopp in |- *; - unfold Zcompare in H; rewrite H; trivial with arith - | intros q p H; exists (p + q)%positive; simpl in |- *; trivial with arith - | simpl in |- *; intros p H; discriminate H - | simpl in |- *; intros q p H; discriminate H - | unfold Zcompare in |- *; intros q p; rewrite <- ZC4; intros H; - exists (q - p)%positive; simpl in |- *; rewrite (ZC1 q p H); - trivial with arith ]. + rewrite Z.compare_sub. unfold Z.sub. + destruct (n+-m) as [|p|p]; try discriminate. now exists p. Qed. (** * Comparison and addition *) -Lemma weaken_Zcompare_Zplus_compatible : - (forall (n m:Z) (p:positive), (Zpos p + n ?= Zpos p + m) = (n ?= m)) -> - forall n m p:Z, (p + n ?= p + m) = (n ?= m). +Lemma Zcompare_plus_compat n m p : (p + n ?= p + m) = (n ?= m). Proof. - intros H x y z; destruct z; - [ reflexivity - | apply H - | rewrite (Zcompare_opp x y); rewrite Zcompare_opp; - do 2 rewrite Zopp_plus_distr; rewrite Zopp_neg; - apply H ]. + apply Z.add_compare_mono_l. Qed. -Hint Local Resolve ZC4. - -Lemma weak_Zcompare_Zplus_compatible : - forall (n m:Z) (p:positive), (Zpos p + n ?= Zpos p + m) = (n ?= m). -Proof. - intros x y z; case x; case y; simpl in |- *; auto with arith; - [ intros p; apply nat_of_P_lt_Lt_compare_complement_morphism; apply ZL17 - | intros p; ElimPcompare z p; intros E; rewrite E; auto with arith; - apply nat_of_P_gt_Gt_compare_complement_morphism; - rewrite nat_of_P_minus_morphism; - [ unfold gt in |- *; apply ZL16 | assumption ] - | intros p; ElimPcompare z p; intros E; auto with arith; - apply nat_of_P_gt_Gt_compare_complement_morphism; - unfold gt in |- *; apply ZL17 - | intros p q; ElimPcompare q p; intros E; rewrite E; - [ rewrite (Pcompare_Eq_eq q p E); apply Pcompare_refl - | apply nat_of_P_lt_Lt_compare_complement_morphism; - do 2 rewrite nat_of_P_plus_morphism; apply plus_lt_compat_l; - apply nat_of_P_lt_Lt_compare_morphism with (1 := E) - | apply nat_of_P_gt_Gt_compare_complement_morphism; unfold gt in |- *; - do 2 rewrite nat_of_P_plus_morphism; apply plus_lt_compat_l; - exact (nat_of_P_gt_Gt_compare_morphism q p E) ] - | intros p q; ElimPcompare z p; intros E; rewrite E; auto with arith; - apply nat_of_P_gt_Gt_compare_complement_morphism; - rewrite nat_of_P_minus_morphism; - [ unfold gt in |- *; apply lt_trans with (m := nat_of_P z); - [ apply ZL16 | apply ZL17 ] - | assumption ] - | intros p; ElimPcompare z p; intros E; rewrite E; auto with arith; - simpl in |- *; apply nat_of_P_lt_Lt_compare_complement_morphism; - rewrite nat_of_P_minus_morphism; [ apply ZL16 | assumption ] - | intros p q; ElimPcompare z q; intros E; rewrite E; auto with arith; - simpl in |- *; apply nat_of_P_lt_Lt_compare_complement_morphism; - rewrite nat_of_P_minus_morphism; - [ apply lt_trans with (m := nat_of_P z); [ apply ZL16 | apply ZL17 ] - | assumption ] - | intros p q; ElimPcompare z q; intros E0; rewrite E0; ElimPcompare z p; - intros E1; rewrite E1; ElimPcompare q p; intros E2; - rewrite E2; auto with arith; - [ absurd ((q ?= p)%positive Eq = Lt); - [ rewrite <- (Pcompare_Eq_eq z q E0); - rewrite <- (Pcompare_Eq_eq z p E1); rewrite (Pcompare_refl z); - discriminate - | assumption ] - | absurd ((q ?= p)%positive Eq = Gt); - [ rewrite <- (Pcompare_Eq_eq z q E0); - rewrite <- (Pcompare_Eq_eq z p E1); rewrite (Pcompare_refl z); - discriminate - | assumption ] - | absurd ((z ?= p)%positive Eq = Lt); - [ rewrite (Pcompare_Eq_eq z q E0); rewrite <- (Pcompare_Eq_eq q p E2); - rewrite (Pcompare_refl q); discriminate - | assumption ] - | absurd ((z ?= p)%positive Eq = Lt); - [ rewrite (Pcompare_Eq_eq z q E0); rewrite E2; discriminate - | assumption ] - | absurd ((z ?= p)%positive Eq = Gt); - [ rewrite (Pcompare_Eq_eq z q E0); rewrite <- (Pcompare_Eq_eq q p E2); - rewrite (Pcompare_refl q); discriminate - | assumption ] - | absurd ((z ?= p)%positive Eq = Gt); - [ rewrite (Pcompare_Eq_eq z q E0); rewrite E2; discriminate - | assumption ] - | absurd ((z ?= q)%positive Eq = Lt); - [ rewrite (Pcompare_Eq_eq z p E1); rewrite (Pcompare_Eq_eq q p E2); - rewrite (Pcompare_refl p); discriminate - | assumption ] - | absurd ((p ?= q)%positive Eq = Gt); - [ rewrite <- (Pcompare_Eq_eq z p E1); rewrite E0; discriminate - | apply ZC2; assumption ] - | simpl in |- *; rewrite (Pcompare_Eq_eq q p E2); - rewrite (Pcompare_refl (p - z)); auto with arith - | simpl in |- *; rewrite <- ZC4; - apply nat_of_P_gt_Gt_compare_complement_morphism; - rewrite nat_of_P_minus_morphism; - [ rewrite nat_of_P_minus_morphism; - [ unfold gt in |- *; apply plus_lt_reg_l with (p := nat_of_P z); - rewrite le_plus_minus_r; - [ rewrite le_plus_minus_r; - [ apply nat_of_P_lt_Lt_compare_morphism; assumption - | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; - assumption ] - | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; - assumption ] - | apply ZC2; assumption ] - | apply ZC2; assumption ] - | simpl in |- *; rewrite <- ZC4; - apply nat_of_P_lt_Lt_compare_complement_morphism; - rewrite nat_of_P_minus_morphism; - [ rewrite nat_of_P_minus_morphism; - [ apply plus_lt_reg_l with (p := nat_of_P z); - rewrite le_plus_minus_r; - [ rewrite le_plus_minus_r; - [ apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; - assumption - | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; - assumption ] - | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; - assumption ] - | apply ZC2; assumption ] - | apply ZC2; assumption ] - | absurd ((z ?= q)%positive Eq = Lt); - [ rewrite (Pcompare_Eq_eq q p E2); rewrite E1; discriminate - | assumption ] - | absurd ((q ?= p)%positive Eq = Lt); - [ cut ((q ?= p)%positive Eq = Gt); - [ intros E; rewrite E; discriminate - | apply nat_of_P_gt_Gt_compare_complement_morphism; - unfold gt in |- *; apply lt_trans with (m := nat_of_P z); - [ apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; assumption - | apply nat_of_P_lt_Lt_compare_morphism; assumption ] ] - | assumption ] - | absurd ((z ?= q)%positive Eq = Gt); - [ rewrite (Pcompare_Eq_eq z p E1); rewrite (Pcompare_Eq_eq q p E2); - rewrite (Pcompare_refl p); discriminate - | assumption ] - | absurd ((z ?= q)%positive Eq = Gt); - [ rewrite (Pcompare_Eq_eq z p E1); rewrite ZC1; - [ discriminate | assumption ] - | assumption ] - | absurd ((z ?= q)%positive Eq = Gt); - [ rewrite (Pcompare_Eq_eq q p E2); rewrite E1; discriminate - | assumption ] - | absurd ((q ?= p)%positive Eq = Gt); - [ rewrite ZC1; - [ discriminate - | apply nat_of_P_gt_Gt_compare_complement_morphism; - unfold gt in |- *; apply lt_trans with (m := nat_of_P z); - [ apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; assumption - | apply nat_of_P_lt_Lt_compare_morphism; assumption ] ] - | assumption ] - | simpl in |- *; rewrite (Pcompare_Eq_eq q p E2); apply Pcompare_refl - | simpl in |- *; apply nat_of_P_gt_Gt_compare_complement_morphism; - unfold gt in |- *; rewrite nat_of_P_minus_morphism; - [ rewrite nat_of_P_minus_morphism; - [ apply plus_lt_reg_l with (p := nat_of_P p); - rewrite le_plus_minus_r; - [ rewrite plus_comm; apply plus_lt_reg_l with (p := nat_of_P q); - rewrite plus_assoc; rewrite le_plus_minus_r; - [ rewrite (plus_comm (nat_of_P q)); apply plus_lt_compat_l; - apply nat_of_P_lt_Lt_compare_morphism; - assumption - | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; - apply ZC1; assumption ] - | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; - apply ZC1; assumption ] - | assumption ] - | assumption ] - | simpl in |- *; apply nat_of_P_lt_Lt_compare_complement_morphism; - rewrite nat_of_P_minus_morphism; - [ rewrite nat_of_P_minus_morphism; - [ apply plus_lt_reg_l with (p := nat_of_P q); - rewrite le_plus_minus_r; - [ rewrite plus_comm; apply plus_lt_reg_l with (p := nat_of_P p); - rewrite plus_assoc; rewrite le_plus_minus_r; - [ rewrite (plus_comm (nat_of_P p)); apply plus_lt_compat_l; - apply nat_of_P_lt_Lt_compare_morphism; - apply ZC1; assumption - | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; - apply ZC1; assumption ] - | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; - apply ZC1; assumption ] - | assumption ] - | assumption ] ] ]. -Qed. - -Lemma Zcompare_plus_compat : forall n m p:Z, (p + n ?= p + m) = (n ?= m). +Lemma Zplus_compare_compat (r:comparison) (n m p q:Z) : + (n ?= m) = r -> (p ?= q) = r -> (n + p ?= m + q) = r. Proof. - exact (weaken_Zcompare_Zplus_compatible weak_Zcompare_Zplus_compatible). + rewrite (Z.compare_sub n), (Z.compare_sub p), (Z.compare_sub (n+p)). + unfold Z.sub. rewrite Z.opp_add_distr. rewrite Z.add_shuffle1. + destruct (n+-m), (p+-q); simpl; intros; now subst. Qed. -Lemma Zplus_compare_compat : - forall (r:comparison) (n m p q:Z), - (n ?= m) = r -> (p ?= q) = r -> (n + p ?= m + q) = r. +Lemma Zcompare_succ_Gt n : (Z.succ n ?= n) = Gt. Proof. - intros r x y z t; case r; - [ intros H1 H2; elim (Zcompare_Eq_iff_eq x y); elim (Zcompare_Eq_iff_eq z t); - intros H3 H4 H5 H6; rewrite H3; - [ rewrite H5; - [ elim (Zcompare_Eq_iff_eq (y + t) (y + t)); auto with arith - | auto with arith ] - | auto with arith ] - | intros H1 H2; elim (Zcompare_Gt_Lt_antisym (y + t) (x + z)); intros H3 H4; - apply H3; apply Zcompare_Gt_trans with (m := y + z); - [ rewrite Zcompare_plus_compat; elim (Zcompare_Gt_Lt_antisym t z); - auto with arith - | do 2 rewrite <- (Zplus_comm z); rewrite Zcompare_plus_compat; - elim (Zcompare_Gt_Lt_antisym y x); auto with arith ] - | intros H1 H2; apply Zcompare_Gt_trans with (m := x + t); - [ rewrite Zcompare_plus_compat; assumption - | do 2 rewrite <- (Zplus_comm t); rewrite Zcompare_plus_compat; - assumption ] ]. + apply Z.lt_gt. apply Z.lt_succ_diag_r. Qed. -Lemma Zcompare_succ_Gt : forall n:Z, (Zsucc n ?= n) = Gt. +Lemma Zcompare_Gt_not_Lt n m : (n ?= m) = Gt <-> (n ?= m+1) <> Lt. Proof. - intro x; unfold Zsucc in |- *; pattern x at 2 in |- *; - rewrite <- (Zplus_0_r x); rewrite Zcompare_plus_compat; - reflexivity. -Qed. - -Lemma Zcompare_Gt_not_Lt : forall n m:Z, (n ?= m) = Gt <-> (n ?= m + 1) <> Lt. -Proof. - intros x y; split; - [ intro H; elim_compare x (y + 1); - [ intro H1; rewrite H1; discriminate - | intros H1; elim Zcompare_Gt_spec with (1 := H); intros h H2; - absurd ((nat_of_P h > 0)%nat /\ (nat_of_P h < 1)%nat); - [ unfold not in |- *; intros H3; elim H3; intros H4 H5; - absurd (nat_of_P h > 0)%nat; - [ unfold gt in |- *; apply le_not_lt; apply le_S_n; exact H5 - | assumption ] - | split; - [ elim (ZL4 h); intros i H3; rewrite H3; apply gt_Sn_O - | change (nat_of_P h < nat_of_P 1)%nat in |- *; - apply nat_of_P_lt_Lt_compare_morphism; - change ((Zpos h ?= 1) = Lt) in |- *; rewrite <- H2; - rewrite <- (fun m n:Z => Zcompare_plus_compat m n y); - rewrite (Zplus_comm x); rewrite Zplus_assoc; - rewrite Zplus_opp_r; simpl in |- *; exact H1 ] ] - | intros H1; rewrite H1; discriminate ] - | intros H; elim_compare x (y + 1); - [ intros H1; elim (Zcompare_Eq_iff_eq x (y + 1)); intros H2 H3; - rewrite (H2 H1); exact (Zcompare_succ_Gt y) - | intros H1; absurd ((x ?= y + 1) = Lt); assumption - | intros H1; apply Zcompare_Gt_trans with (m := Zsucc y); - [ exact H1 | exact (Zcompare_succ_Gt y) ] ] ]. + change (n > m <-> n >= m+1). Z.swap_greater. symmetry. apply Z.le_succ_l. Qed. (** * Successor and comparison *) -Lemma Zcompare_succ_compat : forall n m:Z, (Zsucc n ?= Zsucc m) = (n ?= m). +Lemma Zcompare_succ_compat n m : (Z.succ n ?= Z.succ m) = (n ?= m). Proof. - intros n m; unfold Zsucc in |- *; do 2 rewrite (fun t:Z => Zplus_comm t 1); - rewrite Zcompare_plus_compat; auto with arith. + rewrite <- 2 Z.add_1_l. apply Zcompare_plus_compat. Qed. (** * Multiplication and comparison *) @@ -389,28 +93,24 @@ Qed. Lemma Zcompare_mult_compat : forall (p:positive) (n m:Z), (Zpos p * n ?= Zpos p * m) = (n ?= m). Proof. - intros x; induction x as [p H| p H| ]; - [ intros y z; cut (Zpos (xI p) = Zpos p + Zpos p + 1); - [ intros E; rewrite E; do 4 rewrite Zmult_plus_distr_l; - do 2 rewrite Zmult_1_l; apply Zplus_compare_compat; - [ apply Zplus_compare_compat; apply H | trivial with arith ] - | simpl in |- *; rewrite (Pplus_diag p); trivial with arith ] - | intros y z; cut (Zpos (xO p) = Zpos p + Zpos p); - [ intros E; rewrite E; do 2 rewrite Zmult_plus_distr_l; - apply Zplus_compare_compat; apply H - | simpl in |- *; rewrite (Pplus_diag p); trivial with arith ] - | intros y z; do 2 rewrite Zmult_1_l; trivial with arith ]. + intros p [|n|n] [|m|m]; simpl; trivial; now rewrite Pos.mul_compare_mono_l. Qed. +Lemma Zmult_compare_compat_l n m p: + p > 0 -> (n ?= m) = (p * n ?= p * m). +Proof. + intros; destruct p; try discriminate. + symmetry. apply Zcompare_mult_compat. +Qed. -(** * Reverting [x ?= y] to trichotomy *) - -Lemma rename : - forall (A:Type) (P:A -> Prop) (x:A), (forall y:A, x = y -> P y) -> P x. +Lemma Zmult_compare_compat_r n m p : + p > 0 -> (n ?= m) = (n * p ?= m * p). Proof. - auto with arith. + intros; rewrite 2 (Zmult_comm _ p); now apply Zmult_compare_compat_l. Qed. +(** * Relating [x ?= y] to [=], [<=], [<], [>=] or [>] *) + Lemma Zcompare_elim : forall (c1 c2 c3:Prop) (n m:Z), (n = m -> c1) -> @@ -421,11 +121,7 @@ Lemma Zcompare_elim : | Gt => c3 end. Proof. - intros c1 c2 c3 x y; intros. - apply rename with (x := x ?= y); intro r; elim r; - [ intro; apply H; apply (Zcompare_Eq_eq x y); assumption - | unfold Zlt in H0; assumption - | unfold Zgt in H1; assumption ]. + intros. case Z.compare_spec; trivial. now Z.swap_greater. Qed. Lemma Zcompare_eq_case : @@ -436,26 +132,9 @@ Lemma Zcompare_eq_case : | Gt => c3 end. Proof. - intros c1 c2 c3 x y; intros. - rewrite H0; rewrite Zcompare_refl. - assumption. + intros. subst. now rewrite Z.compare_refl. Qed. -(** * Decompose an egality between two [?=] relations into 3 implications *) - -Lemma Zcompare_egal_dec : - forall n m p q:Z, - (n < m -> p < q) -> - ((n ?= m) = Eq -> (p ?= q) = Eq) -> - (n > m -> p > q) -> (n ?= m) = (p ?= q). -Proof. - intros x1 y1 x2 y2. - unfold Zgt in |- *; unfold Zlt in |- *; case (x1 ?= y1); case (x2 ?= y2); - auto with arith; symmetry in |- *; auto with arith. -Qed. - -(** * Relating [x ?= y] to [Zle], [Zlt], [Zge] or [Zgt] *) - Lemma Zle_compare : forall n m:Z, n <= m -> match n ?= m with @@ -464,7 +143,7 @@ Lemma Zle_compare : | Gt => False end. Proof. - intros x y; unfold Zle in |- *; elim (x ?= y); auto with arith. + intros. case Z.compare_spec; trivial; Z.order. Qed. Lemma Zlt_compare : @@ -475,8 +154,7 @@ Lemma Zlt_compare : | Gt => False end. Proof. - intros x y; unfold Zlt in |- *; elim (x ?= y); intros; - discriminate || trivial with arith. + intros x y H; now rewrite H. Qed. Lemma Zge_compare : @@ -487,7 +165,7 @@ Lemma Zge_compare : | Gt => True end. Proof. - intros x y; unfold Zge in |- *; elim (x ?= y); auto with arith. + intros. now case Z.compare_spec. Qed. Lemma Zgt_compare : @@ -498,26 +176,23 @@ Lemma Zgt_compare : | Gt => True end. Proof. - intros x y; unfold Zgt in |- *; elim (x ?= y); intros; - discriminate || trivial with arith. + intros x y H; now rewrite H. Qed. -(*********************) -(** * Other properties *) +(** Compatibility notations *) -Lemma Zmult_compare_compat_l : - forall n m p:Z, p > 0 -> (n ?= m) = (p * n ?= p * m). -Proof. - intros x y z H; destruct z. - discriminate H. - rewrite Zcompare_mult_compat; reflexivity. - discriminate H. -Qed. - -Lemma Zmult_compare_compat_r : - forall n m p:Z, p > 0 -> (n ?= m) = (n * p ?= m * p). -Proof. - intros x y z H; rewrite (Zmult_comm x z); rewrite (Zmult_comm y z); - apply Zmult_compare_compat_l; assumption. -Qed. +Notation Zcompare_refl := Z.compare_refl (only parsing). +Notation Zcompare_Eq_eq := Z.compare_eq (only parsing). +Notation Zcompare_Eq_iff_eq := Z.compare_eq_iff (only parsing). +Notation Zcompare_spec := Z.compare_spec (only parsing). +Notation Zmin_l := Z.min_l (only parsing). +Notation Zmin_r := Z.min_r (only parsing). +Notation Zmax_l := Z.max_l (only parsing). +Notation Zmax_r := Z.max_r (only parsing). +Notation Zabs_eq := Z.abs_eq (only parsing). +Notation Zabs_non_eq := Z.abs_neq (only parsing). +Notation Zsgn_0 := Z.sgn_null (only parsing). +Notation Zsgn_1 := Z.sgn_pos (only parsing). +Notation Zsgn_m1 := Z.sgn_neg (only parsing). +(** Not kept: Zcompare_egal_dec *) |