summaryrefslogtreecommitdiff
path: root/theories/ZArith/Int.v
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2012-08-20 18:27:02 +0200
committerGravatar Stephane Glondu <steph@glondu.net>2012-08-20 18:27:02 +0200
commit595aa062e10b8d7100ec2ad9b766f9e624e47295 (patch)
tree963f9c948173de70209cba5828b372f184afc306 /theories/ZArith/Int.v
parentab08ae9f0f944d9f801c44e4ffd3e6b7fcf4b024 (diff)
parente0d682ec25282a348d35c5b169abafec48555690 (diff)
Merge tag 'upstream/8.4dfsg' into experimental/master
Upstream version 8.4dfsg
Diffstat (limited to 'theories/ZArith/Int.v')
-rw-r--r--theories/ZArith/Int.v16
1 files changed, 8 insertions, 8 deletions
diff --git a/theories/ZArith/Int.v b/theories/ZArith/Int.v
index 7c840c56..384c046f 100644
--- a/theories/ZArith/Int.v
+++ b/theories/ZArith/Int.v
@@ -250,7 +250,7 @@ Module MoreInt (Import I:Int).
| EZplus e1 e2 => ((ez2z e1)+(ez2z e2))%Z
| EZminus e1 e2 => ((ez2z e1)-(ez2z e2))%Z
| EZmult e1 e2 => ((ez2z e1)*(ez2z e2))%Z
- | EZmax e1 e2 => Zmax (ez2z e1) (ez2z e2)
+ | EZmax e1 e2 => Z.max (ez2z e1) (ez2z e2)
| EZopp e => (-(ez2z e))%Z
| EZofI e => i2z (ei2i e)
| EZraw z => z
@@ -367,14 +367,14 @@ Module Z_as_Int <: Int.
Definition _1 := 1.
Definition _2 := 2.
Definition _3 := 3.
- Definition plus := Zplus.
- Definition opp := Zopp.
- Definition minus := Zminus.
- Definition mult := Zmult.
- Definition max := Zmax.
+ Definition plus := Z.add.
+ Definition opp := Z.opp.
+ Definition minus := Z.sub.
+ Definition mult := Z.mul.
+ Definition max := Z.max.
Definition gt_le_dec := Z_gt_le_dec.
Definition ge_lt_dec := Z_ge_lt_dec.
- Definition eq_dec := Z_eq_dec.
+ Definition eq_dec := Z.eq_dec.
Definition i2z : int -> Z := fun n => n.
Lemma i2z_eq : forall n p, i2z n=i2z p -> n = p. Proof. auto. Qed.
Lemma i2z_0 : i2z _0 = 0. Proof. auto. Qed.
@@ -385,5 +385,5 @@ Module Z_as_Int <: Int.
Lemma i2z_opp n : i2z (- n) = - i2z n. Proof. auto. Qed.
Lemma i2z_minus n p : i2z (n - p) = i2z n - i2z p. Proof. auto. Qed.
Lemma i2z_mult n p : i2z (n * p) = i2z n * i2z p. Proof. auto. Qed.
- Lemma i2z_max n p : i2z (max n p) = Zmax (i2z n) (i2z p). Proof. auto. Qed.
+ Lemma i2z_max n p : i2z (max n p) = Z.max (i2z n) (i2z p). Proof. auto. Qed.
End Z_as_Int.