summaryrefslogtreecommitdiff
path: root/theories/ZArith/Int.v
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2013-05-08 18:01:07 +0200
committerGravatar Stephane Glondu <steph@glondu.net>2013-05-08 18:01:07 +0200
commit095eac936751bab72e3c6bbdfa3ede51f7198721 (patch)
tree44cf2859ba6b8486f056efaaf7ee6c2d855f2aae /theories/ZArith/Int.v
parent4e6d6dab2ef2de6c1ad7972fc981e55a4fde7ae3 (diff)
parent0b14713e3efd7f8f1cc8a06555d0ec8fbe496130 (diff)
Merge branch 'experimental/master'
Diffstat (limited to 'theories/ZArith/Int.v')
-rw-r--r--theories/ZArith/Int.v152
1 files changed, 73 insertions, 79 deletions
diff --git a/theories/ZArith/Int.v b/theories/ZArith/Int.v
index c0123ca8..99ecd150 100644
--- a/theories/ZArith/Int.v
+++ b/theories/ZArith/Int.v
@@ -6,8 +6,6 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: Int.v 12363 2009-09-28 15:04:07Z letouzey $ *)
-
(** * An light axiomatization of integers (used in FSetAVL). *)
(** We define a signature for an integer datatype based on [Z].
@@ -18,28 +16,26 @@
Require Import ZArith.
Delimit Scope Int_scope with I.
-
+Local Open Scope Int_scope.
(** * a specification of integers *)
Module Type Int.
- Open Scope Int_scope.
-
- Parameter int : Set.
+ Parameter t : Set.
+ Bind Scope Int_scope with t.
- Parameter i2z : int -> Z.
- Arguments Scope i2z [ Int_scope ].
+ Parameter i2z : t -> Z.
- Parameter _0 : int.
- Parameter _1 : int.
- Parameter _2 : int.
- Parameter _3 : int.
- Parameter plus : int -> int -> int.
- Parameter opp : int -> int.
- Parameter minus : int -> int -> int.
- Parameter mult : int -> int -> int.
- Parameter max : int -> int -> int.
+ Parameter _0 : t.
+ Parameter _1 : t.
+ Parameter _2 : t.
+ Parameter _3 : t.
+ Parameter plus : t -> t -> t.
+ Parameter opp : t -> t.
+ Parameter minus : t -> t -> t.
+ Parameter mult : t -> t -> t.
+ Parameter max : t -> t -> t.
Notation "0" := _0 : Int_scope.
Notation "1" := _1 : Int_scope.
@@ -56,10 +52,10 @@ Module Type Int.
Notation "x == y" := (i2z x = i2z y)
(at level 70, y at next level, no associativity) : Int_scope.
- Notation "x <= y" := (Zle (i2z x) (i2z y)): Int_scope.
- Notation "x < y" := (Zlt (i2z x) (i2z y)) : Int_scope.
- Notation "x >= y" := (Zge (i2z x) (i2z y)) : Int_scope.
- Notation "x > y" := (Zgt (i2z x) (i2z y)): Int_scope.
+ Notation "x <= y" := (i2z x <= i2z y)%Z : Int_scope.
+ Notation "x < y" := (i2z x < i2z y)%Z : Int_scope.
+ Notation "x >= y" := (i2z x >= i2z y)%Z : Int_scope.
+ Notation "x > y" := (i2z x > i2z y)%Z : Int_scope.
Notation "x <= y <= z" := (x <= y /\ y <= z) : Int_scope.
Notation "x <= y < z" := (x <= y /\ y < z) : Int_scope.
Notation "x < y < z" := (x < y /\ y < z) : Int_scope.
@@ -67,41 +63,39 @@ Module Type Int.
(** Some decidability fonctions (informative). *)
- Axiom gt_le_dec : forall x y: int, {x > y} + {x <= y}.
- Axiom ge_lt_dec : forall x y : int, {x >= y} + {x < y}.
- Axiom eq_dec : forall x y : int, { x == y } + {~ x==y }.
+ Axiom gt_le_dec : forall x y : t, {x > y} + {x <= y}.
+ Axiom ge_lt_dec : forall x y : t, {x >= y} + {x < y}.
+ Axiom eq_dec : forall x y : t, { x == y } + {~ x==y }.
(** Specifications *)
(** First, we ask [i2z] to be injective. Said otherwise, our ad-hoc equality
[==] and the generic [=] are in fact equivalent. We define [==]
- nonetheless since the translation to [Z] for using automatic tactic is easier. *)
+ nonetheless since the translation to [Z] for using automatic tactic
+ is easier. *)
- Axiom i2z_eq : forall n p : int, n == p -> n = p.
+ Axiom i2z_eq : forall n p : t, n == p -> n = p.
(** Then, we express the specifications of the above parameters using their
Z counterparts. *)
- Open Scope Z_scope.
- Axiom i2z_0 : i2z _0 = 0.
- Axiom i2z_1 : i2z _1 = 1.
- Axiom i2z_2 : i2z _2 = 2.
- Axiom i2z_3 : i2z _3 = 3.
- Axiom i2z_plus : forall n p, i2z (n + p) = i2z n + i2z p.
- Axiom i2z_opp : forall n, i2z (-n) = -i2z n.
- Axiom i2z_minus : forall n p, i2z (n - p) = i2z n - i2z p.
- Axiom i2z_mult : forall n p, i2z (n * p) = i2z n * i2z p.
- Axiom i2z_max : forall n p, i2z (max n p) = Zmax (i2z n) (i2z p).
+ Axiom i2z_0 : i2z _0 = 0%Z.
+ Axiom i2z_1 : i2z _1 = 1%Z.
+ Axiom i2z_2 : i2z _2 = 2%Z.
+ Axiom i2z_3 : i2z _3 = 3%Z.
+ Axiom i2z_plus : forall n p, i2z (n + p) = (i2z n + i2z p)%Z.
+ Axiom i2z_opp : forall n, i2z (-n) = (-i2z n)%Z.
+ Axiom i2z_minus : forall n p, i2z (n - p) = (i2z n - i2z p)%Z.
+ Axiom i2z_mult : forall n p, i2z (n * p) = (i2z n * i2z p)%Z.
+ Axiom i2z_max : forall n p, i2z (max n p) = Z.max (i2z n) (i2z p).
End Int.
(** * Facts and tactics using [Int] *)
-Module MoreInt (I:Int).
- Import I.
-
- Open Scope Int_scope.
+Module MoreInt (Import I:Int).
+ Local Notation int := I.t.
(** A magic (but costly) tactic that goes from [int] back to the [Z]
friendly world ... *)
@@ -110,13 +104,14 @@ Module MoreInt (I:Int).
i2z_0 i2z_1 i2z_2 i2z_3 i2z_plus i2z_opp i2z_minus i2z_mult i2z_max : i2z.
Ltac i2z := match goal with
- | H : (eq (A:=int) ?a ?b) |- _ =>
- generalize (f_equal i2z H);
- try autorewrite with i2z; clear H; intro H; i2z
- | |- (eq (A:=int) ?a ?b) => apply (i2z_eq a b); try autorewrite with i2z; i2z
- | H : _ |- _ => progress autorewrite with i2z in H; i2z
- | _ => try autorewrite with i2z
- end.
+ | H : ?a = ?b |- _ =>
+ generalize (f_equal i2z H);
+ try autorewrite with i2z; clear H; intro H; i2z
+ | |- ?a = ?b =>
+ apply (i2z_eq a b); try autorewrite with i2z; i2z
+ | H : _ |- _ => progress autorewrite with i2z in H; i2z
+ | _ => try autorewrite with i2z
+ end.
(** A reflexive version of the [i2z] tactic *)
@@ -126,14 +121,14 @@ Module MoreInt (I:Int).
Anyhow, [i2z_refl] is enough for applying [romega]. *)
Ltac i2z_gen := match goal with
- | |- (eq (A:=int) ?a ?b) => apply (i2z_eq a b); i2z_gen
- | H : (eq (A:=int) ?a ?b) |- _ =>
+ | |- ?a = ?b => apply (i2z_eq a b); i2z_gen
+ | H : ?a = ?b |- _ =>
generalize (f_equal i2z H); clear H; i2z_gen
- | H : (eq (A:=Z) ?a ?b) |- _ => revert H; i2z_gen
- | H : (Zlt ?a ?b) |- _ => revert H; i2z_gen
- | H : (Zle ?a ?b) |- _ => revert H; i2z_gen
- | H : (Zgt ?a ?b) |- _ => revert H; i2z_gen
- | H : (Zge ?a ?b) |- _ => revert H; i2z_gen
+ | H : eq (A:=Z) ?a ?b |- _ => revert H; i2z_gen
+ | H : Z.lt ?a ?b |- _ => revert H; i2z_gen
+ | H : Z.le ?a ?b |- _ => revert H; i2z_gen
+ | H : Z.gt ?a ?b |- _ => revert H; i2z_gen
+ | H : Z.ge ?a ?b |- _ => revert H; i2z_gen
| H : _ -> ?X |- _ =>
(* A [Set] or [Type] part cannot be dealt with easily
using the [ExprP] datatype. So we forget it, leaving
@@ -203,11 +198,11 @@ Module MoreInt (I:Int).
with z2ez trm :=
match constr:trm with
- | (?x+?y)%Z => let ex := z2ez x with ey := z2ez y in constr:(EZplus ex ey)
- | (?x-?y)%Z => let ex := z2ez x with ey := z2ez y in constr:(EZminus ex ey)
- | (?x*?y)%Z => let ex := z2ez x with ey := z2ez y in constr:(EZmult ex ey)
- | (Zmax ?x ?y) => let ex := z2ez x with ey := z2ez y in constr:(EZmax ex ey)
- | (-?x)%Z => let ex := z2ez x in constr:(EZopp ex)
+ | (?x + ?y)%Z => let ex := z2ez x with ey := z2ez y in constr:(EZplus ex ey)
+ | (?x - ?y)%Z => let ex := z2ez x with ey := z2ez y in constr:(EZminus ex ey)
+ | (?x * ?y)%Z => let ex := z2ez x with ey := z2ez y in constr:(EZmult ex ey)
+ | (Z.max ?x ?y) => let ex := z2ez x with ey := z2ez y in constr:(EZmax ex ey)
+ | (- ?x)%Z => let ex := z2ez x in constr:(EZopp ex)
| i2z ?x => let ex := i2ei x in constr:(EZofI ex)
| ?x => constr:(EZraw x)
end.
@@ -222,10 +217,10 @@ Module MoreInt (I:Int).
| (?x \/ ?y) => let ex := p2ep x with ey := p2ep y in constr:(EPor ex ey)
| (~ ?x) => let ex := p2ep x in constr:(EPneg ex)
| (eq (A:=Z) ?x ?y) => let ex := z2ez x with ey := z2ez y in constr:(EPeq ex ey)
- | (?x<?y)%Z => let ex := z2ez x with ey := z2ez y in constr:(EPlt ex ey)
- | (?x<=?y)%Z => let ex := z2ez x with ey := z2ez y in constr:(EPle ex ey)
- | (?x>?y)%Z => let ex := z2ez x with ey := z2ez y in constr:(EPgt ex ey)
- | (?x>=?y)%Z => let ex := z2ez x with ey := z2ez y in constr:(EPge ex ey)
+ | (?x < ?y)%Z => let ex := z2ez x with ey := z2ez y in constr:(EPlt ex ey)
+ | (?x <= ?y)%Z => let ex := z2ez x with ey := z2ez y in constr:(EPle ex ey)
+ | (?x > ?y)%Z => let ex := z2ez x with ey := z2ez y in constr:(EPgt ex ey)
+ | (?x >= ?y)%Z => let ex := z2ez x with ey := z2ez y in constr:(EPge ex ey)
| ?x => constr:(EPraw x)
end.
@@ -252,7 +247,7 @@ Module MoreInt (I:Int).
| EZplus e1 e2 => ((ez2z e1)+(ez2z e2))%Z
| EZminus e1 e2 => ((ez2z e1)-(ez2z e2))%Z
| EZmult e1 e2 => ((ez2z e1)*(ez2z e2))%Z
- | EZmax e1 e2 => Zmax (ez2z e1) (ez2z e2)
+ | EZmax e1 e2 => Z.max (ez2z e1) (ez2z e2)
| EZopp e => (-(ez2z e))%Z
| EZofI e => i2z (ei2i e)
| EZraw z => z
@@ -362,30 +357,29 @@ End MoreInt.
(** It's always nice to know that our [Int] interface is realizable :-) *)
Module Z_as_Int <: Int.
- Open Scope Z_scope.
- Definition int := Z.
+ Local Open Scope Z_scope.
+ Definition t := Z.
Definition _0 := 0.
Definition _1 := 1.
Definition _2 := 2.
Definition _3 := 3.
- Definition plus := Zplus.
- Definition opp := Zopp.
- Definition minus := Zminus.
- Definition mult := Zmult.
- Definition max := Zmax.
+ Definition plus := Z.add.
+ Definition opp := Z.opp.
+ Definition minus := Z.sub.
+ Definition mult := Z.mul.
+ Definition max := Z.max.
Definition gt_le_dec := Z_gt_le_dec.
Definition ge_lt_dec := Z_ge_lt_dec.
- Definition eq_dec := Z_eq_dec.
- Definition i2z : int -> Z := fun n => n.
+ Definition eq_dec := Z.eq_dec.
+ Definition i2z : t -> Z := fun n => n.
Lemma i2z_eq : forall n p, i2z n=i2z p -> n = p. Proof. auto. Qed.
Lemma i2z_0 : i2z _0 = 0. Proof. auto. Qed.
Lemma i2z_1 : i2z _1 = 1. Proof. auto. Qed.
Lemma i2z_2 : i2z _2 = 2. Proof. auto. Qed.
Lemma i2z_3 : i2z _3 = 3. Proof. auto. Qed.
- Lemma i2z_plus : forall n p, i2z (n + p) = i2z n + i2z p. Proof. auto. Qed.
- Lemma i2z_opp : forall n, i2z (- n) = - i2z n. Proof. auto. Qed.
- Lemma i2z_minus : forall n p, i2z (n - p) = i2z n - i2z p. Proof. auto. Qed.
- Lemma i2z_mult : forall n p, i2z (n * p) = i2z n * i2z p. Proof. auto. Qed.
- Lemma i2z_max : forall n p, i2z (max n p) = Zmax (i2z n) (i2z p). Proof. auto. Qed.
+ Lemma i2z_plus n p : i2z (n + p) = i2z n + i2z p. Proof. auto. Qed.
+ Lemma i2z_opp n : i2z (- n) = - i2z n. Proof. auto. Qed.
+ Lemma i2z_minus n p : i2z (n - p) = i2z n - i2z p. Proof. auto. Qed.
+ Lemma i2z_mult n p : i2z (n * p) = i2z n * i2z p. Proof. auto. Qed.
+ Lemma i2z_max n p : i2z (max n p) = Z.max (i2z n) (i2z p). Proof. auto. Qed.
End Z_as_Int.
-