summaryrefslogtreecommitdiff
path: root/theories/ZArith/BinIntDef.v
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2012-08-20 18:27:01 +0200
committerGravatar Stephane Glondu <steph@glondu.net>2012-08-20 18:27:01 +0200
commite0d682ec25282a348d35c5b169abafec48555690 (patch)
tree1a46f0142a85df553388c932110793881f3af52f /theories/ZArith/BinIntDef.v
parent86535d84cc3cffeee1dcd8545343f234e7285530 (diff)
Imported Upstream version 8.4dfsgupstream/8.4dfsg
Diffstat (limited to 'theories/ZArith/BinIntDef.v')
-rw-r--r--theories/ZArith/BinIntDef.v253
1 files changed, 131 insertions, 122 deletions
diff --git a/theories/ZArith/BinIntDef.v b/theories/ZArith/BinIntDef.v
index d96d20fb..958ce2ef 100644
--- a/theories/ZArith/BinIntDef.v
+++ b/theories/ZArith/BinIntDef.v
@@ -1,7 +1,7 @@
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -22,6 +22,11 @@ Module Z.
Definition t := Z.
+(** ** Nicer names [Z.pos] and [Z.neg] for contructors *)
+
+Notation pos := Zpos.
+Notation neg := Zneg.
+
(** ** Constants *)
Definition zero := 0.
@@ -33,22 +38,22 @@ Definition two := 2.
Definition double x :=
match x with
| 0 => 0
- | Zpos p => Zpos p~0
- | Zneg p => Zneg p~0
+ | pos p => pos p~0
+ | neg p => neg p~0
end.
Definition succ_double x :=
match x with
| 0 => 1
- | Zpos p => Zpos p~1
- | Zneg p => Zneg (Pos.pred_double p)
+ | pos p => pos p~1
+ | neg p => neg (Pos.pred_double p)
end.
Definition pred_double x :=
match x with
| 0 => -1
- | Zneg p => Zneg p~1
- | Zpos p => Zpos (Pos.pred_double p)
+ | neg p => neg p~1
+ | pos p => pos (Pos.pred_double p)
end.
(** ** Subtraction of positive into Z *)
@@ -57,12 +62,12 @@ Fixpoint pos_sub (x y:positive) {struct y} : Z :=
match x, y with
| p~1, q~1 => double (pos_sub p q)
| p~1, q~0 => succ_double (pos_sub p q)
- | p~1, 1 => Zpos p~0
+ | p~1, 1 => pos p~0
| p~0, q~1 => pred_double (pos_sub p q)
| p~0, q~0 => double (pos_sub p q)
- | p~0, 1 => Zpos (Pos.pred_double p)
- | 1, q~1 => Zneg q~0
- | 1, q~0 => Zneg (Pos.pred_double q)
+ | p~0, 1 => pos (Pos.pred_double p)
+ | 1, q~1 => neg q~0
+ | 1, q~0 => neg (Pos.pred_double q)
| 1, 1 => Z0
end%positive.
@@ -72,10 +77,10 @@ Definition add x y :=
match x, y with
| 0, y => y
| x, 0 => x
- | Zpos x', Zpos y' => Zpos (x' + y')
- | Zpos x', Zneg y' => pos_sub x' y'
- | Zneg x', Zpos y' => pos_sub y' x'
- | Zneg x', Zneg y' => Zneg (x' + y')
+ | pos x', pos y' => pos (x' + y')
+ | pos x', neg y' => pos_sub x' y'
+ | neg x', pos y' => pos_sub y' x'
+ | neg x', neg y' => neg (x' + y')
end.
Infix "+" := add : Z_scope.
@@ -85,8 +90,8 @@ Infix "+" := add : Z_scope.
Definition opp x :=
match x with
| 0 => 0
- | Zpos x => Zneg x
- | Zneg x => Zpos x
+ | pos x => neg x
+ | neg x => pos x
end.
Notation "- x" := (opp x) : Z_scope.
@@ -111,10 +116,10 @@ Definition mul x y :=
match x, y with
| 0, _ => 0
| _, 0 => 0
- | Zpos x', Zpos y' => Zpos (x' * y')
- | Zpos x', Zneg y' => Zneg (x' * y')
- | Zneg x', Zpos y' => Zneg (x' * y')
- | Zneg x', Zneg y' => Zpos (x' * y')
+ | pos x', pos y' => pos (x' * y')
+ | pos x', neg y' => neg (x' * y')
+ | neg x', pos y' => neg (x' * y')
+ | neg x', neg y' => pos (x' * y')
end.
Infix "*" := mul : Z_scope.
@@ -125,9 +130,9 @@ Definition pow_pos (z:Z) (n:positive) := Pos.iter n (mul z) 1.
Definition pow x y :=
match y with
- | Zpos p => pow_pos x p
+ | pos p => pow_pos x p
| 0 => 1
- | Zneg _ => 0
+ | neg _ => 0
end.
Infix "^" := pow : Z_scope.
@@ -137,8 +142,8 @@ Infix "^" := pow : Z_scope.
Definition square x :=
match x with
| 0 => 0
- | Zpos p => Zpos (Pos.square p)
- | Zneg p => Zpos (Pos.square p)
+ | pos p => pos (Pos.square p)
+ | neg p => pos (Pos.square p)
end.
(** ** Comparison *)
@@ -146,14 +151,14 @@ Definition square x :=
Definition compare x y :=
match x, y with
| 0, 0 => Eq
- | 0, Zpos y' => Lt
- | 0, Zneg y' => Gt
- | Zpos x', 0 => Gt
- | Zpos x', Zpos y' => (x' ?= y')%positive
- | Zpos x', Zneg y' => Gt
- | Zneg x', 0 => Lt
- | Zneg x', Zpos y' => Lt
- | Zneg x', Zneg y' => CompOpp ((x' ?= y')%positive)
+ | 0, pos y' => Lt
+ | 0, neg y' => Gt
+ | pos x', 0 => Gt
+ | pos x', pos y' => (x' ?= y')%positive
+ | pos x', neg y' => Gt
+ | neg x', 0 => Lt
+ | neg x', pos y' => Lt
+ | neg x', neg y' => CompOpp ((x' ?= y')%positive)
end.
Infix "?=" := compare (at level 70, no associativity) : Z_scope.
@@ -163,8 +168,8 @@ Infix "?=" := compare (at level 70, no associativity) : Z_scope.
Definition sgn z :=
match z with
| 0 => 0
- | Zpos p => 1
- | Zneg p => -1
+ | pos p => 1
+ | neg p => -1
end.
(** Boolean equality and comparisons *)
@@ -183,7 +188,7 @@ Definition ltb x y :=
(** Nota: [geb] and [gtb] are provided for compatibility,
but [leb] and [ltb] should rather be used instead, since
- more results we be available on them. *)
+ more results will be available on them. *)
Definition geb x y :=
match x ?= y with
@@ -197,15 +202,11 @@ Definition gtb x y :=
| _ => false
end.
-(** Nota: this [eqb] is not convertible with the generated [Z_beq],
- since the underlying [Pos.eqb] differs from [positive_beq]
- (cf BinIntDef). *)
-
Fixpoint eqb x y :=
match x, y with
| 0, 0 => true
- | Zpos p, Zpos q => Pos.eqb p q
- | Zneg p, Zneg q => Pos.eqb p q
+ | pos p, pos q => Pos.eqb p q
+ | neg p, neg q => Pos.eqb p q
| _, _ => false
end.
@@ -234,8 +235,8 @@ Definition min n m :=
Definition abs z :=
match z with
| 0 => 0
- | Zpos p => Zpos p
- | Zneg p => Zpos p
+ | pos p => pos p
+ | neg p => pos p
end.
(** ** Conversions *)
@@ -245,24 +246,24 @@ Definition abs z :=
Definition abs_nat (z:Z) : nat :=
match z with
| 0 => 0%nat
- | Zpos p => Pos.to_nat p
- | Zneg p => Pos.to_nat p
+ | pos p => Pos.to_nat p
+ | neg p => Pos.to_nat p
end.
(** From [Z] to [N] via absolute value *)
Definition abs_N (z:Z) : N :=
match z with
- | Z0 => 0%N
- | Zpos p => Npos p
- | Zneg p => Npos p
+ | 0 => 0%N
+ | pos p => N.pos p
+ | neg p => N.pos p
end.
(** From [Z] to [nat] by rounding negative numbers to 0 *)
Definition to_nat (z:Z) : nat :=
match z with
- | Zpos p => Pos.to_nat p
+ | pos p => Pos.to_nat p
| _ => O
end.
@@ -270,7 +271,7 @@ Definition to_nat (z:Z) : nat :=
Definition to_N (z:Z) : N :=
match z with
- | Zpos p => Npos p
+ | pos p => N.pos p
| _ => 0%N
end.
@@ -279,15 +280,23 @@ Definition to_N (z:Z) : N :=
Definition of_nat (n:nat) : Z :=
match n with
| O => 0
- | S n => Zpos (Pos.of_succ_nat n)
+ | S n => pos (Pos.of_succ_nat n)
end.
(** From [N] to [Z] *)
Definition of_N (n:N) : Z :=
match n with
- | N0 => 0
- | Npos p => Zpos p
+ | 0%N => 0
+ | N.pos p => pos p
+ end.
+
+(** From [Z] to [positive] by rounding nonpositive numbers to 1 *)
+
+Definition to_pos (z:Z) : positive :=
+ match z with
+ | pos p => p
+ | _ => 1%positive
end.
(** ** Iteration of a function
@@ -297,7 +306,7 @@ Definition of_N (n:N) : Z :=
Definition iter (n:Z) {A} (f:A -> A) (x:A) :=
match n with
- | Zpos p => Pos.iter p f x
+ | pos p => Pos.iter p f x
| _ => x
end.
@@ -352,17 +361,17 @@ Definition div_eucl (a b:Z) : Z * Z :=
match a, b with
| 0, _ => (0, 0)
| _, 0 => (0, 0)
- | Zpos a', Zpos _ => pos_div_eucl a' b
- | Zneg a', Zpos _ =>
+ | pos a', pos _ => pos_div_eucl a' b
+ | neg a', pos _ =>
let (q, r) := pos_div_eucl a' b in
match r with
| 0 => (- q, 0)
| _ => (- (q + 1), b - r)
end
- | Zneg a', Zneg b' =>
- let (q, r) := pos_div_eucl a' (Zpos b') in (q, - r)
- | Zpos a', Zneg b' =>
- let (q, r) := pos_div_eucl a' (Zpos b') in
+ | neg a', neg b' =>
+ let (q, r) := pos_div_eucl a' (pos b') in (q, - r)
+ | pos a', neg b' =>
+ let (q, r) := pos_div_eucl a' (pos b') in
match r with
| 0 => (- q, 0)
| _ => (- (q + 1), b + r)
@@ -396,14 +405,14 @@ Definition quotrem (a b:Z) : Z * Z :=
match a, b with
| 0, _ => (0, 0)
| _, 0 => (0, a)
- | Zpos a, Zpos b =>
- let (q, r) := N.pos_div_eucl a (Npos b) in (of_N q, of_N r)
- | Zneg a, Zpos b =>
- let (q, r) := N.pos_div_eucl a (Npos b) in (-of_N q, - of_N r)
- | Zpos a, Zneg b =>
- let (q, r) := N.pos_div_eucl a (Npos b) in (-of_N q, of_N r)
- | Zneg a, Zneg b =>
- let (q, r) := N.pos_div_eucl a (Npos b) in (of_N q, - of_N r)
+ | pos a, pos b =>
+ let (q, r) := N.pos_div_eucl a (N.pos b) in (of_N q, of_N r)
+ | neg a, pos b =>
+ let (q, r) := N.pos_div_eucl a (N.pos b) in (-of_N q, - of_N r)
+ | pos a, neg b =>
+ let (q, r) := N.pos_div_eucl a (N.pos b) in (-of_N q, of_N r)
+ | neg a, neg b =>
+ let (q, r) := N.pos_div_eucl a (N.pos b) in (of_N q, - of_N r)
end.
Definition quot a b := fst (quotrem a b).
@@ -418,16 +427,16 @@ Infix "รท" := quot (at level 40, left associativity) : Z_scope.
Definition even z :=
match z with
| 0 => true
- | Zpos (xO _) => true
- | Zneg (xO _) => true
+ | pos (xO _) => true
+ | neg (xO _) => true
| _ => false
end.
Definition odd z :=
match z with
| 0 => false
- | Zpos (xO _) => false
- | Zneg (xO _) => false
+ | pos (xO _) => false
+ | neg (xO _) => false
| _ => true
end.
@@ -441,9 +450,9 @@ Definition odd z :=
Definition div2 z :=
match z with
| 0 => 0
- | Zpos 1 => 0
- | Zpos p => Zpos (Pos.div2 p)
- | Zneg p => Zneg (Pos.div2_up p)
+ | pos 1 => 0
+ | pos p => pos (Pos.div2 p)
+ | neg p => neg (Pos.div2_up p)
end.
(** [quot2] performs rounding toward zero, it is hence a particular
@@ -453,21 +462,21 @@ Definition div2 z :=
Definition quot2 (z:Z) :=
match z with
| 0 => 0
- | Zpos 1 => 0
- | Zpos p => Zpos (Pos.div2 p)
- | Zneg 1 => 0
- | Zneg p => Zneg (Pos.div2 p)
+ | pos 1 => 0
+ | pos p => pos (Pos.div2 p)
+ | neg 1 => 0
+ | neg p => neg (Pos.div2 p)
end.
-(** NB: [Z.quot2] used to be named [Zdiv2] in Coq <= 8.3 *)
+(** NB: [Z.quot2] used to be named [Z.div2] in Coq <= 8.3 *)
(** * Base-2 logarithm *)
Definition log2 z :=
match z with
- | Zpos (p~1) => Zpos (Pos.size p)
- | Zpos (p~0) => Zpos (Pos.size p)
+ | pos (p~1) => pos (Pos.size p)
+ | pos (p~0) => pos (Pos.size p)
| _ => 0
end.
@@ -477,17 +486,17 @@ Definition log2 z :=
Definition sqrtrem n :=
match n with
| 0 => (0, 0)
- | Zpos p =>
+ | pos p =>
match Pos.sqrtrem p with
- | (s, IsPos r) => (Zpos s, Zpos r)
- | (s, _) => (Zpos s, 0)
+ | (s, IsPos r) => (pos s, pos r)
+ | (s, _) => (pos s, 0)
end
- | Zneg _ => (0,0)
+ | neg _ => (0,0)
end.
Definition sqrt n :=
match n with
- | Zpos p => Zpos (Pos.sqrt p)
+ | pos p => pos (Pos.sqrt p)
| _ => 0
end.
@@ -498,10 +507,10 @@ Definition gcd a b :=
match a,b with
| 0, _ => abs b
| _, 0 => abs a
- | Zpos a, Zpos b => Zpos (Pos.gcd a b)
- | Zpos a, Zneg b => Zpos (Pos.gcd a b)
- | Zneg a, Zpos b => Zpos (Pos.gcd a b)
- | Zneg a, Zneg b => Zpos (Pos.gcd a b)
+ | pos a, pos b => pos (Pos.gcd a b)
+ | pos a, neg b => pos (Pos.gcd a b)
+ | neg a, pos b => pos (Pos.gcd a b)
+ | neg a, neg b => pos (Pos.gcd a b)
end.
(** A generalized gcd, also computing division of a and b by gcd. *)
@@ -510,14 +519,14 @@ Definition ggcd a b : Z*(Z*Z) :=
match a,b with
| 0, _ => (abs b,(0, sgn b))
| _, 0 => (abs a,(sgn a, 0))
- | Zpos a, Zpos b =>
- let '(g,(aa,bb)) := Pos.ggcd a b in (Zpos g, (Zpos aa, Zpos bb))
- | Zpos a, Zneg b =>
- let '(g,(aa,bb)) := Pos.ggcd a b in (Zpos g, (Zpos aa, Zneg bb))
- | Zneg a, Zpos b =>
- let '(g,(aa,bb)) := Pos.ggcd a b in (Zpos g, (Zneg aa, Zpos bb))
- | Zneg a, Zneg b =>
- let '(g,(aa,bb)) := Pos.ggcd a b in (Zpos g, (Zneg aa, Zneg bb))
+ | pos a, pos b =>
+ let '(g,(aa,bb)) := Pos.ggcd a b in (pos g, (pos aa, pos bb))
+ | pos a, neg b =>
+ let '(g,(aa,bb)) := Pos.ggcd a b in (pos g, (pos aa, neg bb))
+ | neg a, pos b =>
+ let '(g,(aa,bb)) := Pos.ggcd a b in (pos g, (neg aa, pos bb))
+ | neg a, neg b =>
+ let '(g,(aa,bb)) := Pos.ggcd a b in (pos g, (neg aa, neg bb))
end.
@@ -536,13 +545,13 @@ Definition ggcd a b : Z*(Z*Z) :=
Definition testbit a n :=
match n with
| 0 => odd a
- | Zpos p =>
+ | pos p =>
match a with
| 0 => false
- | Zpos a => Pos.testbit a (Npos p)
- | Zneg a => negb (N.testbit (Pos.pred_N a) (Npos p))
+ | pos a => Pos.testbit a (N.pos p)
+ | neg a => negb (N.testbit (Pos.pred_N a) (N.pos p))
end
- | Zneg _ => false
+ | neg _ => false
end.
(** Shifts
@@ -559,8 +568,8 @@ Definition testbit a n :=
Definition shiftl a n :=
match n with
| 0 => a
- | Zpos p => Pos.iter p (mul 2) a
- | Zneg p => Pos.iter p div2 a
+ | pos p => Pos.iter p (mul 2) a
+ | neg p => Pos.iter p div2 a
end.
Definition shiftr a n := shiftl a (-n).
@@ -571,40 +580,40 @@ Definition lor a b :=
match a, b with
| 0, _ => b
| _, 0 => a
- | Zpos a, Zpos b => Zpos (Pos.lor a b)
- | Zneg a, Zpos b => Zneg (N.succ_pos (N.ldiff (Pos.pred_N a) (Npos b)))
- | Zpos a, Zneg b => Zneg (N.succ_pos (N.ldiff (Pos.pred_N b) (Npos a)))
- | Zneg a, Zneg b => Zneg (N.succ_pos (N.land (Pos.pred_N a) (Pos.pred_N b)))
+ | pos a, pos b => pos (Pos.lor a b)
+ | neg a, pos b => neg (N.succ_pos (N.ldiff (Pos.pred_N a) (N.pos b)))
+ | pos a, neg b => neg (N.succ_pos (N.ldiff (Pos.pred_N b) (N.pos a)))
+ | neg a, neg b => neg (N.succ_pos (N.land (Pos.pred_N a) (Pos.pred_N b)))
end.
Definition land a b :=
match a, b with
| 0, _ => 0
| _, 0 => 0
- | Zpos a, Zpos b => of_N (Pos.land a b)
- | Zneg a, Zpos b => of_N (N.ldiff (Npos b) (Pos.pred_N a))
- | Zpos a, Zneg b => of_N (N.ldiff (Npos a) (Pos.pred_N b))
- | Zneg a, Zneg b => Zneg (N.succ_pos (N.lor (Pos.pred_N a) (Pos.pred_N b)))
+ | pos a, pos b => of_N (Pos.land a b)
+ | neg a, pos b => of_N (N.ldiff (N.pos b) (Pos.pred_N a))
+ | pos a, neg b => of_N (N.ldiff (N.pos a) (Pos.pred_N b))
+ | neg a, neg b => neg (N.succ_pos (N.lor (Pos.pred_N a) (Pos.pred_N b)))
end.
Definition ldiff a b :=
match a, b with
| 0, _ => 0
| _, 0 => a
- | Zpos a, Zpos b => of_N (Pos.ldiff a b)
- | Zneg a, Zpos b => Zneg (N.succ_pos (N.lor (Pos.pred_N a) (Npos b)))
- | Zpos a, Zneg b => of_N (N.land (Npos a) (Pos.pred_N b))
- | Zneg a, Zneg b => of_N (N.ldiff (Pos.pred_N b) (Pos.pred_N a))
+ | pos a, pos b => of_N (Pos.ldiff a b)
+ | neg a, pos b => neg (N.succ_pos (N.lor (Pos.pred_N a) (N.pos b)))
+ | pos a, neg b => of_N (N.land (N.pos a) (Pos.pred_N b))
+ | neg a, neg b => of_N (N.ldiff (Pos.pred_N b) (Pos.pred_N a))
end.
Definition lxor a b :=
match a, b with
| 0, _ => b
| _, 0 => a
- | Zpos a, Zpos b => of_N (Pos.lxor a b)
- | Zneg a, Zpos b => Zneg (N.succ_pos (N.lxor (Pos.pred_N a) (Npos b)))
- | Zpos a, Zneg b => Zneg (N.succ_pos (N.lxor (Npos a) (Pos.pred_N b)))
- | Zneg a, Zneg b => of_N (N.lxor (Pos.pred_N a) (Pos.pred_N b))
+ | pos a, pos b => of_N (Pos.lxor a b)
+ | neg a, pos b => neg (N.succ_pos (N.lxor (Pos.pred_N a) (N.pos b)))
+ | pos a, neg b => neg (N.succ_pos (N.lxor (N.pos a) (Pos.pred_N b)))
+ | neg a, neg b => of_N (N.lxor (Pos.pred_N a) (Pos.pred_N b))
end.
End Z. \ No newline at end of file