diff options
author | Samuel Mimram <samuel.mimram@ens-lyon.org> | 2004-07-28 21:54:47 +0000 |
---|---|---|
committer | Samuel Mimram <samuel.mimram@ens-lyon.org> | 2004-07-28 21:54:47 +0000 |
commit | 6b649aba925b6f7462da07599fe67ebb12a3460e (patch) | |
tree | 43656bcaa51164548f3fa14e5b10de5ef1088574 /theories/Sets/Ensembles.v |
Imported Upstream version 8.0pl1upstream/8.0pl1
Diffstat (limited to 'theories/Sets/Ensembles.v')
-rwxr-xr-x | theories/Sets/Ensembles.v | 101 |
1 files changed, 101 insertions, 0 deletions
diff --git a/theories/Sets/Ensembles.v b/theories/Sets/Ensembles.v new file mode 100755 index 00000000..05afc298 --- /dev/null +++ b/theories/Sets/Ensembles.v @@ -0,0 +1,101 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) +(****************************************************************************) +(* *) +(* Naive Set Theory in Coq *) +(* *) +(* INRIA INRIA *) +(* Rocquencourt Sophia-Antipolis *) +(* *) +(* Coq V6.1 *) +(* *) +(* Gilles Kahn *) +(* Gerard Huet *) +(* *) +(* *) +(* *) +(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *) +(* to the Newton Institute for providing an exceptional work environment *) +(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *) +(****************************************************************************) + +(*i $Id: Ensembles.v,v 1.7.2.1 2004/07/16 19:31:17 herbelin Exp $ i*) + +Section Ensembles. +Variable U : Type. + +Definition Ensemble := U -> Prop. + +Definition In (A:Ensemble) (x:U) : Prop := A x. + +Definition Included (B C:Ensemble) : Prop := forall x:U, In B x -> In C x. + +Inductive Empty_set : Ensemble :=. + +Inductive Full_set : Ensemble := + Full_intro : forall x:U, In Full_set x. + +(** NB: The following definition builds-in equality of elements in [U] as + Leibniz equality. + + This may have to be changed if we replace [U] by a Setoid on [U] + with its own equality [eqs], with + [In_singleton: (y: U)(eqs x y) -> (In (Singleton x) y)]. *) + +Inductive Singleton (x:U) : Ensemble := + In_singleton : In (Singleton x) x. + +Inductive Union (B C:Ensemble) : Ensemble := + | Union_introl : forall x:U, In B x -> In (Union B C) x + | Union_intror : forall x:U, In C x -> In (Union B C) x. + +Definition Add (B:Ensemble) (x:U) : Ensemble := Union B (Singleton x). + +Inductive Intersection (B C:Ensemble) : Ensemble := + Intersection_intro : + forall x:U, In B x -> In C x -> In (Intersection B C) x. + +Inductive Couple (x y:U) : Ensemble := + | Couple_l : In (Couple x y) x + | Couple_r : In (Couple x y) y. + +Inductive Triple (x y z:U) : Ensemble := + | Triple_l : In (Triple x y z) x + | Triple_m : In (Triple x y z) y + | Triple_r : In (Triple x y z) z. + +Definition Complement (A:Ensemble) : Ensemble := fun x:U => ~ In A x. + +Definition Setminus (B C:Ensemble) : Ensemble := + fun x:U => In B x /\ ~ In C x. + +Definition Subtract (B:Ensemble) (x:U) : Ensemble := Setminus B (Singleton x). + +Inductive Disjoint (B C:Ensemble) : Prop := + Disjoint_intro : (forall x:U, ~ In (Intersection B C) x) -> Disjoint B C. + +Inductive Inhabited (B:Ensemble) : Prop := + Inhabited_intro : forall x:U, In B x -> Inhabited B. + +Definition Strict_Included (B C:Ensemble) : Prop := Included B C /\ B <> C. + +Definition Same_set (B C:Ensemble) : Prop := Included B C /\ Included C B. + +(** Extensionality Axiom *) + +Axiom Extensionality_Ensembles : forall A B:Ensemble, Same_set A B -> A = B. +Hint Resolve Extensionality_Ensembles. + +End Ensembles. + +Hint Unfold In Included Same_set Strict_Included Add Setminus Subtract: sets + v62. + +Hint Resolve Union_introl Union_intror Intersection_intro In_singleton + Couple_l Couple_r Triple_l Triple_m Triple_r Disjoint_intro + Extensionality_Ensembles: sets v62.
\ No newline at end of file |