diff options
author | Samuel Mimram <smimram@debian.org> | 2006-06-16 14:41:51 +0000 |
---|---|---|
committer | Samuel Mimram <smimram@debian.org> | 2006-06-16 14:41:51 +0000 |
commit | e978da8c41d8a3c19a29036d9c569fbe2a4616b0 (patch) | |
tree | 0de2a907ee93c795978f3c843155bee91c11ed60 /theories/Setoids | |
parent | 3ef7797ef6fc605dfafb32523261fe1b023aeecb (diff) |
Imported Upstream version 8.0pl3+8.1betaupstream/8.0pl3+8.1beta
Diffstat (limited to 'theories/Setoids')
-rw-r--r-- | theories/Setoids/Setoid.v | 27 |
1 files changed, 25 insertions, 2 deletions
diff --git a/theories/Setoids/Setoid.v b/theories/Setoids/Setoid.v index 6ff73438..b670fc19 100644 --- a/theories/Setoids/Setoid.v +++ b/theories/Setoids/Setoid.v @@ -7,7 +7,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Setoid.v 6306 2004-11-16 16:11:10Z sacerdot $: i*) +(*i $Id: Setoid.v 8866 2006-05-28 16:21:04Z herbelin $: i*) Require Export Relation_Definitions. @@ -339,7 +339,7 @@ with Morphism_Context_List_rect2 := Induction for Morphism_Context_List Sort Typ Definition product_of_arguments : Arguments -> Type. induction 1. exact (carrier_of_relation_class a). - exact (prodT (carrier_of_relation_class a) IHX). + exact (prod (carrier_of_relation_class a) IHX). Defined. Definition get_rewrite_direction: rewrite_direction -> Argument_Class -> rewrite_direction. @@ -662,3 +662,26 @@ Implicit Arguments Setoid_Theory []. Implicit Arguments Seq_refl []. Implicit Arguments Seq_sym []. Implicit Arguments Seq_trans []. + + +(* Some tactics for manipulating Setoid Theory not officially + declared as Setoid. *) + +Ltac trans_st x := match goal with + | H : Setoid_Theory _ ?eqA |- ?eqA _ _ => + apply (Seq_trans _ _ H) with x; auto + end. + +Ltac sym_st := match goal with + | H : Setoid_Theory _ ?eqA |- ?eqA _ _ => + apply (Seq_sym _ _ H); auto + end. + +Ltac refl_st := match goal with + | H : Setoid_Theory _ ?eqA |- ?eqA _ _ => + apply (Seq_refl _ _ H); auto + end. + +Definition gen_st : forall A : Set, Setoid_Theory _ (@eq A). +Proof. constructor; congruence. Qed. + |