diff options
author | Samuel Mimram <smimram@debian.org> | 2006-04-28 14:59:16 +0000 |
---|---|---|
committer | Samuel Mimram <smimram@debian.org> | 2006-04-28 14:59:16 +0000 |
commit | 3ef7797ef6fc605dfafb32523261fe1b023aeecb (patch) | |
tree | ad89c6bb57ceee608fcba2bb3435b74e0f57919e /theories/Relations/Relation_Operators.v | |
parent | 018ee3b0c2be79eb81b1f65c3f3fa142d24129c8 (diff) |
Imported Upstream version 8.0pl3+8.1alphaupstream/8.0pl3+8.1alpha
Diffstat (limited to 'theories/Relations/Relation_Operators.v')
-rw-r--r--[-rwxr-xr-x] | theories/Relations/Relation_Operators.v | 28 |
1 files changed, 14 insertions, 14 deletions
diff --git a/theories/Relations/Relation_Operators.v b/theories/Relations/Relation_Operators.v index b6359ada..edc112e5 100755..100644 --- a/theories/Relations/Relation_Operators.v +++ b/theories/Relations/Relation_Operators.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Relation_Operators.v,v 1.8.2.1 2004/07/16 19:31:16 herbelin Exp $ i*) +(*i $Id: Relation_Operators.v 8642 2006-03-17 10:09:02Z notin $ i*) (****************************************************************************) (* Bruno Barras, Cristina Cornes *) @@ -22,31 +22,31 @@ Require Import List. (** Some operators to build relations *) Section Transitive_Closure. - Variable A : Set. + Variable A : Type. Variable R : relation A. - Inductive clos_trans : A -> A -> Prop := - | t_step : forall x y:A, R x y -> clos_trans x y + Inductive clos_trans (x: A) : A -> Prop := + | t_step : forall y:A, R x y -> clos_trans x y | t_trans : - forall x y z:A, clos_trans x y -> clos_trans y z -> clos_trans x z. + forall y z:A, clos_trans x y -> clos_trans y z -> clos_trans x z. End Transitive_Closure. Section Reflexive_Transitive_Closure. - Variable A : Set. + Variable A : Type. Variable R : relation A. - Inductive clos_refl_trans : relation A := - | rt_step : forall x y:A, R x y -> clos_refl_trans x y - | rt_refl : forall x:A, clos_refl_trans x x + Inductive clos_refl_trans (x:A) : A -> Prop:= + | rt_step : forall y:A, R x y -> clos_refl_trans x y + | rt_refl : clos_refl_trans x x | rt_trans : - forall x y z:A, + forall y z:A, clos_refl_trans x y -> clos_refl_trans y z -> clos_refl_trans x z. End Reflexive_Transitive_Closure. Section Reflexive_Symetric_Transitive_Closure. - Variable A : Set. + Variable A : Type. Variable R : relation A. Inductive clos_refl_sym_trans : relation A := @@ -62,7 +62,7 @@ End Reflexive_Symetric_Transitive_Closure. Section Transposee. - Variable A : Set. + Variable A : Type. Variable R : relation A. Definition transp (x y:A) := R y x. @@ -70,7 +70,7 @@ End Transposee. Section Union. - Variable A : Set. + Variable A : Type. Variables R1 R2 : relation A. Definition union (x y:A) := R1 x y \/ R2 x y. @@ -164,4 +164,4 @@ End Lexicographic_Exponentiation. Hint Unfold transp union: sets v62. Hint Resolve t_step rt_step rt_refl rst_step rst_refl: sets v62. -Hint Immediate rst_sym: sets v62.
\ No newline at end of file +Hint Immediate rst_sym: sets v62. |