diff options
author | Samuel Mimram <smimram@debian.org> | 2007-02-13 13:48:12 +0000 |
---|---|---|
committer | Samuel Mimram <smimram@debian.org> | 2007-02-13 13:48:12 +0000 |
commit | 55ce117e8083477593cf1ff2e51a3641c7973830 (patch) | |
tree | a82defb4105f175c71b0d13cae42831ce608c4d6 /theories/Reals | |
parent | 208a0f7bfa5249f9795e6e225f309cbe715c0fad (diff) |
Imported Upstream version 8.1+dfsgupstream/8.1+dfsg
Diffstat (limited to 'theories/Reals')
-rw-r--r-- | theories/Reals/AltSeries.v | 8 | ||||
-rw-r--r-- | theories/Reals/ArithProp.v | 4 | ||||
-rw-r--r-- | theories/Reals/Cos_plus.v | 6 | ||||
-rw-r--r-- | theories/Reals/Cos_rel.v | 23 | ||||
-rw-r--r-- | theories/Reals/Exp_prop.v | 22 | ||||
-rw-r--r-- | theories/Reals/PartSum.v | 4 | ||||
-rw-r--r-- | theories/Reals/RIneq.v | 14 | ||||
-rw-r--r-- | theories/Reals/Rdefinitions.v | 4 | ||||
-rw-r--r-- | theories/Reals/Rfunctions.v | 13 | ||||
-rw-r--r-- | theories/Reals/Rpow_def.v | 7 | ||||
-rw-r--r-- | theories/Reals/Rsigma.v | 6 | ||||
-rw-r--r-- | theories/Reals/Rsqrt_def.v | 6 | ||||
-rw-r--r-- | theories/Reals/Rtrigo.v | 16 | ||||
-rw-r--r-- | theories/Reals/Rtrigo_alt.v | 6 | ||||
-rw-r--r-- | theories/Reals/Rtrigo_reg.v | 6 | ||||
-rw-r--r-- | theories/Reals/SeqProp.v | 10 |
16 files changed, 87 insertions, 68 deletions
diff --git a/theories/Reals/AltSeries.v b/theories/Reals/AltSeries.v index fa44b6ff..581c181f 100644 --- a/theories/Reals/AltSeries.v +++ b/theories/Reals/AltSeries.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) - (*i $Id: AltSeries.v 9245 2006-10-17 12:53:34Z notin $ i*) + (*i $Id: AltSeries.v 9551 2007-01-29 15:13:35Z bgregoir $ i*) Require Import Rbase. Require Import Rfunctions. @@ -92,9 +92,9 @@ Proof. replace (Un (S (2 * S N)) + (-1 * Un (S (2 * S N)) + Un (S (S (2 * S N))))) with (Un (S (S (2 * S N)))); [ idtac | ring ]. apply H. - ring_nat. + ring. apply HrecN. - ring_nat. + ring. Qed. (** A more general inequality *) @@ -300,7 +300,7 @@ Proof. do 2 rewrite Rmult_1_r; apply le_INR. replace (2 * S n + 1)%nat with (S (S (2 * n + 1))). apply le_trans with (S (2 * n + 1)); apply le_n_Sn. - ring_nat. + ring. apply not_O_INR; discriminate. apply not_O_INR; replace (2 * n + 1)%nat with (S (2 * n)); [ discriminate | ring ]. diff --git a/theories/Reals/ArithProp.v b/theories/Reals/ArithProp.v index 48876be2..7dbbd605 100644 --- a/theories/Reals/ArithProp.v +++ b/theories/Reals/ArithProp.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) - (*i $Id: ArithProp.v 9245 2006-10-17 12:53:34Z notin $ i*) + (*i $Id: ArithProp.v 9551 2007-01-29 15:13:35Z bgregoir $ i*) Require Import Rbase. Require Import Rbasic_fun. @@ -75,7 +75,7 @@ Proof. apply H3; assumption. right. apply H4; assumption. - unfold double in |- *; ring. + unfold double in |- *;ring. Qed. (* 2m <= 2n => m<=n *) diff --git a/theories/Reals/Cos_plus.v b/theories/Reals/Cos_plus.v index 3719d551..10965951 100644 --- a/theories/Reals/Cos_plus.v +++ b/theories/Reals/Cos_plus.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) - (*i $Id: Cos_plus.v 9245 2006-10-17 12:53:34Z notin $ i*) + (*i $Id: Cos_plus.v 9551 2007-01-29 15:13:35Z bgregoir $ i*) Require Import Rbase. Require Import Rfunctions. @@ -486,7 +486,7 @@ Proof. apply le_trans with (pred N). assumption. apply le_pred_n. - ring_nat. + ring. apply Rle_trans with (sum_f_R0 (fun k:nat => @@ -515,7 +515,7 @@ Proof. apply le_trans with (2 * S (S (n0 + n)))%nat. replace (2 * S (S (n0 + n)))%nat with (S (2 * S (n0 + n) + 1)). apply le_n_Sn. - ring_nat. + ring. omega. right. unfold Rdiv in |- *; rewrite Rmult_comm. diff --git a/theories/Reals/Cos_rel.v b/theories/Reals/Cos_rel.v index ac8ffbeb..d410e14a 100644 --- a/theories/Reals/Cos_rel.v +++ b/theories/Reals/Cos_rel.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Cos_rel.v 9178 2006-09-26 11:18:22Z barras $ i*) +(*i $Id: Cos_rel.v 9551 2007-01-29 15:13:35Z bgregoir $ i*) Require Import Rbase. Require Import Rfunctions. @@ -109,9 +109,10 @@ pose C (2 * S p) (S (2 * l)) * x ^ S (2 * l) * y ^ S (2 * (p - l))) p end). ring_simplify. +unfold Rminus. replace (* (- old ring compat *) - (-1 * + (- sum_f_R0 (fun k:nat => sum_f_R0 @@ -140,7 +141,6 @@ replace (fun l:nat => C (2 * S i) (S (2 * l)) * x ^ S (2 * l) * y ^ S (2 * (i - l))) i) with (sum_f_R0 (fun l:nat => Wn (S (2 * l))) i). -(*rewrite Rplus_comm.*) (* compatibility old ring... *) apply sum_decomposition. apply sum_eq; intros. unfold Wn in |- *. @@ -154,8 +154,7 @@ apply Rmult_eq_compat_l. replace (2 * S i - 2 * i0)%nat with (2 * (S i - i0))%nat. reflexivity. omega. -replace (sum_f_R0 sin_nnn (S n)) with (-1 * (-1 * sum_f_R0 sin_nnn (S n))). -(*replace (* compatibility old ring... *) +replace (- sum_f_R0 (fun k:nat => @@ -171,13 +170,13 @@ replace (sum_f_R0 sin_nnn (S n)) with (-1 * (-1 * sum_f_R0 sin_nnn (S n))). (fun p:nat => (-1) ^ p / INR (fact (2 * p + 1)) * x ^ (2 * p + 1) * ((-1) ^ (k - p) / INR (fact (2 * (k - p) + 1)) * - y ^ (2 * (k - p) + 1))) k) n);[idtac|ring].*) -apply Rmult_eq_compat_l. + y ^ (2 * (k - p) + 1))) k) n);[idtac|ring]. rewrite scal_sum. rewrite decomp_sum. replace (sin_nnn 0%nat) with 0. -rewrite Rmult_0_l; rewrite Rplus_0_l. -replace (pred (S n)) with n; [ idtac | reflexivity ]. +rewrite Rplus_0_l. +change (pred (S n)) with n. + (* replace (pred (S n)) with n; [ idtac | reflexivity ]. *) apply sum_eq; intros. rewrite Rmult_comm. unfold sin_nnn in |- *. @@ -185,8 +184,8 @@ rewrite scal_sum. rewrite scal_sum. apply sum_eq; intros. unfold Rdiv in |- *. -repeat rewrite Rmult_assoc. -rewrite (Rmult_comm (/ INR (fact (2 * S i)))). +(*repeat rewrite Rmult_assoc.*) +(* rewrite (Rmult_comm (/ INR (fact (2 * S i)))). *) repeat rewrite <- Rmult_assoc. rewrite <- (Rmult_comm (/ INR (fact (2 * S i)))). repeat rewrite <- Rmult_assoc. @@ -216,7 +215,7 @@ apply INR_fact_neq_0. apply INR_fact_neq_0. reflexivity. apply lt_O_Sn. -ring. +(* ring. *) apply sum_eq; intros. rewrite scal_sum. apply sum_eq; intros. diff --git a/theories/Reals/Exp_prop.v b/theories/Reals/Exp_prop.v index 5dafec83..beb4b744 100644 --- a/theories/Reals/Exp_prop.v +++ b/theories/Reals/Exp_prop.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Exp_prop.v 9245 2006-10-17 12:53:34Z notin $ i*) +(*i $Id: Exp_prop.v 9551 2007-01-29 15:13:35Z bgregoir $ i*) Require Import Rbase. Require Import Rfunctions. @@ -87,7 +87,7 @@ Proof. reflexivity. replace (2 * S N)%nat with (S (S (2 * N))). simpl in |- *; simpl in HrecN; rewrite HrecN; reflexivity. - ring_nat. + ring. Qed. Lemma div2_S_double : forall N:nat, div2 (S (2 * N)) = N. @@ -96,7 +96,7 @@ Proof. reflexivity. replace (2 * S N)%nat with (S (S (2 * N))). simpl in |- *; simpl in HrecN; rewrite HrecN; reflexivity. - ring_nat. + ring. Qed. Lemma div2_not_R0 : forall N:nat, (1 < N)%nat -> (0 < div2 N)%nat. @@ -367,7 +367,7 @@ Proof. apply le_trans with (pred N). apply H0. apply le_pred_n. - rewrite H4; ring_nat. + rewrite H4; ring. cut (S N = (2 * S N0)%nat). intro. replace (C (S N) (S N0) / INR (fact (S N))) with (/ Rsqr (INR (fact (S N0)))). @@ -388,7 +388,7 @@ Proof. apply INR_fact_neq_0. apply INR_fact_neq_0. apply INR_fact_neq_0. - rewrite H4; ring_nat. + rewrite H4; ring. unfold C, Rdiv in |- *. rewrite (Rmult_comm (INR (fact (S N)))). rewrite Rmult_assoc; rewrite <- Rinv_r_sym. @@ -494,7 +494,7 @@ Proof. simpl in |- *. pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left; apply Rlt_0_1. - ring_nat. + ring. unfold Rsqr in |- *; apply prod_neq_R0; apply INR_fact_neq_0. unfold Rsqr in |- *; apply prod_neq_R0; apply not_O_INR; discriminate. assert (H0 := even_odd_cor N). @@ -515,7 +515,7 @@ Proof. replace (S (S (2 * N0))) with (2 * S N0)%nat. do 2 rewrite div2_double. reflexivity. - ring_nat. + ring. apply S_pred with 0%nat; apply H. Qed. @@ -585,8 +585,8 @@ Proof. apply (fun m n p:nat => mult_le_compat_l p n m). replace (2 * S N1)%nat with (S (S (2 * N1))). apply le_n_Sn. - ring_nat. - ring_nat. + ring. + ring. reflexivity. apply INR_fact_neq_0. apply INR_fact_neq_0. @@ -623,7 +623,7 @@ Proof. replace (2 * N1)%nat with (S (S (2 * pred N1))). reflexivity. pattern N1 at 2 in |- *; replace N1 with (S (pred N1)). - ring_nat. + ring. symmetry in |- *; apply S_pred with 0%nat; apply H8. apply INR_lt. apply Rmult_lt_reg_l with (INR 2). @@ -641,7 +641,7 @@ Proof. rewrite div2_double. replace (2 * S N1)%nat with (S (S (2 * N1))). apply le_n_Sn. - ring_nat. + ring. reflexivity. apply le_trans with (max (2 * S N0) 2). apply le_max_l. diff --git a/theories/Reals/PartSum.v b/theories/Reals/PartSum.v index 11c6378e..a8f72302 100644 --- a/theories/Reals/PartSum.v +++ b/theories/Reals/PartSum.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: PartSum.v 9245 2006-10-17 12:53:34Z notin $ i*) +(*i $Id: PartSum.v 9551 2007-01-29 15:13:35Z bgregoir $ i*) Require Import Rbase. Require Import Rfunctions. @@ -278,7 +278,7 @@ Proof. rewrite (tech5 An (2 * S N)). rewrite <- HrecN. ring. - ring_nat. + ring. Qed. Lemma sum_Rle : diff --git a/theories/Reals/RIneq.v b/theories/Reals/RIneq.v index 51c66afa..7d98a844 100644 --- a/theories/Reals/RIneq.v +++ b/theories/Reals/RIneq.v @@ -6,13 +6,15 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: RIneq.v 9302 2006-10-27 21:21:17Z barras $ i*) +(*i $Id: RIneq.v 9551 2007-01-29 15:13:35Z bgregoir $ i*) (***************************************************************************) (** Basic lemmas for the classical reals numbers *) (***************************************************************************) Require Export Raxioms. +Require Import Rpow_def. +Require Import Zpower. Require Export ZArithRing. Require Import Omega. Require Export RealField. @@ -1528,6 +1530,16 @@ Proof. rewrite Rmult_opp_opp; auto with real. Qed. +Lemma pow_IZR : forall z n, pow (IZR z) n = IZR (Zpower z (Z_of_nat n)). +Proof. + intros z [|n];simpl;trivial. + rewrite Zpower_pos_nat. + rewrite nat_of_P_o_P_of_succ_nat_eq_succ. unfold Zpower_nat;simpl. + rewrite mult_IZR. + induction n;simpl;trivial. + rewrite mult_IZR;ring[IHn]. +Qed. + (**********) Lemma Ropp_Ropp_IZR : forall n:Z, IZR (- n) = - IZR n. Proof. diff --git a/theories/Reals/Rdefinitions.v b/theories/Reals/Rdefinitions.v index f9ba589e..330c0042 100644 --- a/theories/Reals/Rdefinitions.v +++ b/theories/Reals/Rdefinitions.v @@ -5,7 +5,7 @@ (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Rdefinitions.v 9245 2006-10-17 12:53:34Z notin $ i*) +(*i $Id: Rdefinitions.v 9551 2007-01-29 15:13:35Z bgregoir $ i*) (*********************************************************) @@ -55,6 +55,8 @@ Definition Rminus (r1 r2:R) : R := (r1 + - r2)%R. (**********) Definition Rdiv (r1 r2:R) : R := (r1 * / r2)%R. +(**********) + Infix "-" := Rminus : R_scope. Infix "/" := Rdiv : R_scope. diff --git a/theories/Reals/Rfunctions.v b/theories/Reals/Rfunctions.v index c727623c..3d1c0375 100644 --- a/theories/Reals/Rfunctions.v +++ b/theories/Reals/Rfunctions.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Rfunctions.v 9302 2006-10-27 21:21:17Z barras $ i*) +(*i $Id: Rfunctions.v 9551 2007-01-29 15:13:35Z bgregoir $ i*) (*i Some properties about pow and sum have been made with John Harrison i*) (*i Some Lemmas (about pow and powerRZ) have been done by Laurent Thery i*) @@ -15,10 +15,10 @@ (** Definition of the sum functions *) (* *) (********************************************************) -Require Export LegacyArithRing. (* for ring_nat... *) Require Export ArithRing. Require Import Rbase. +Require Export Rpow_def. Require Export R_Ifp. Require Export Rbasic_fun. Require Export R_sqr. @@ -65,11 +65,6 @@ Qed. (** * Power *) (*******************************) (*********) -Boxed Fixpoint pow (r:R) (n:nat) {struct n} : R := - match n with - | O => 1 - | S n => r * pow r n - end. Infix "^" := pow : R_scope. @@ -382,7 +377,7 @@ Proof. replace (x ^ S (S (2 * n))) with (x * x * x ^ (2 * n)). rewrite Hrecn; reflexivity. simpl in |- *; ring. - ring_nat. + ring. Qed. Lemma pow_le : forall (a:R) (n:nat), 0 <= a -> 0 <= a ^ n. @@ -429,7 +424,7 @@ Proof. rewrite Hrecn2. simpl in |- *. ring. - ring_nat. + ring. Qed. Lemma pow_incr : forall (x y:R) (n:nat), 0 <= x <= y -> x ^ n <= y ^ n. diff --git a/theories/Reals/Rpow_def.v b/theories/Reals/Rpow_def.v new file mode 100644 index 00000000..5bdbb76b --- /dev/null +++ b/theories/Reals/Rpow_def.v @@ -0,0 +1,7 @@ +Require Import Rdefinitions. + +Fixpoint pow (r:R) (n:nat) {struct n} : R := + match n with + | O => R1 + | S n => Rmult r (pow r n) + end. diff --git a/theories/Reals/Rsigma.v b/theories/Reals/Rsigma.v index 690c420f..cb31d3b2 100644 --- a/theories/Reals/Rsigma.v +++ b/theories/Reals/Rsigma.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Rsigma.v 9245 2006-10-17 12:53:34Z notin $ i*) +(*i $Id: Rsigma.v 9551 2007-01-29 15:13:35Z bgregoir $ i*) Require Import Rbase. Require Import Rfunctions. @@ -53,7 +53,7 @@ Section Sigma. apply lt_minus_O_lt; assumption. apply sum_eq; intros; replace (S k + S i)%nat with (S (S k) + i)%nat. reflexivity. - ring_nat. + ring. replace (high - S (S k))%nat with (high - S k - 1)%nat. apply pred_of_minus. omega. @@ -71,7 +71,7 @@ Section Sigma. apply le_lt_trans with (S k); [ rewrite H2; apply le_n | assumption ]. apply sum_eq; intros; replace (S (low + i)) with (low + S i)%nat. reflexivity. - ring_nat. + ring. omega. inversion H; [ right; reflexivity | left; assumption ]. Qed. diff --git a/theories/Reals/Rsqrt_def.v b/theories/Reals/Rsqrt_def.v index 92284e7d..0a9f7754 100644 --- a/theories/Reals/Rsqrt_def.v +++ b/theories/Reals/Rsqrt_def.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Rsqrt_def.v 9245 2006-10-17 12:53:34Z notin $ i*) +(*i $Id: Rsqrt_def.v 9551 2007-01-29 15:13:35Z bgregoir $ i*) Require Import Sumbool. Require Import Rbase. @@ -522,7 +522,7 @@ Proof. intro; assumption. intro; reflexivity. split. - intro; elim diff_false_true; assumption. + intro feqt;discriminate feqt. intro. elim n0; assumption. unfold Vn in |- *. @@ -540,7 +540,7 @@ Proof. unfold cond_positivity in |- *. case (Rle_dec 0 z); intro. split. - intro; elim diff_true_false; assumption. + intro feqt; discriminate feqt. intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H7)). split. intro; auto with real. diff --git a/theories/Reals/Rtrigo.v b/theories/Reals/Rtrigo.v index 6e992aa3..b744c788 100644 --- a/theories/Reals/Rtrigo.v +++ b/theories/Reals/Rtrigo.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Rtrigo.v 9245 2006-10-17 12:53:34Z notin $ i*) +(*i $Id: Rtrigo.v 9551 2007-01-29 15:13:35Z bgregoir $ i*) Require Import Rbase. Require Import Rfunctions. @@ -466,10 +466,10 @@ Proof. unfold x in |- *; replace 0 with (INR 0); [ apply le_INR; apply le_O_n | reflexivity ]. prove_sup0. - ring_nat. + ring. apply INR_fact_neq_0. apply INR_fact_neq_0. - ring_nat. + ring. Qed. Lemma SIN : forall a:R, 0 <= a -> a <= PI -> sin_lb a <= sin a <= sin_ub a. @@ -1580,10 +1580,14 @@ Lemma cos_eq_0_0 : Proof. intros x H; rewrite cos_sin in H; generalize (sin_eq_0_0 (PI / INR 2 + x) H); intro H2; elim H2; intros x0 H3; exists (x0 - Z_of_nat 1)%Z; - rewrite <- Z_R_minus; simpl; ring_simplify; -(* rewrite (Rmult_comm PI);*) (* old ring compat *) + rewrite <- Z_R_minus; simpl. +unfold INR in H3. field_simplify [(sym_eq H3)]. field. +(** + ring_simplify. + (* rewrite (Rmult_comm PI);*) (* old ring compat *) rewrite <- H3; simpl; - field; repeat split; discrR. + field;repeat split; discrR. +*) Qed. Lemma cos_eq_0_1 : diff --git a/theories/Reals/Rtrigo_alt.v b/theories/Reals/Rtrigo_alt.v index a95bc54b..89ee1745 100644 --- a/theories/Reals/Rtrigo_alt.v +++ b/theories/Reals/Rtrigo_alt.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Rtrigo_alt.v 9245 2006-10-17 12:53:34Z notin $ i*) +(*i $Id: Rtrigo_alt.v 9551 2007-01-29 15:13:35Z bgregoir $ i*) Require Import Rbase. Require Import Rfunctions. @@ -121,7 +121,7 @@ Proof. apply INR_fact_neq_0. apply INR_fact_neq_0. simpl in |- *; ring. - ring_nat. + ring. assert (H3 := cv_speed_pow_fact a); unfold Un in |- *; unfold Un_cv in H3; unfold R_dist in H3; unfold Un_cv in |- *; unfold R_dist in |- *; intros; elim (H3 eps H4); intros N H5. @@ -316,7 +316,7 @@ Proof. apply INR_fact_neq_0. apply INR_fact_neq_0. simpl in |- *; ring. - ring_nat. + ring. assert (H4 := cv_speed_pow_fact a0); unfold Un in |- *; unfold Un_cv in H4; unfold R_dist in H4; unfold Un_cv in |- *; unfold R_dist in |- *; intros; elim (H4 eps H5); intros N H6; exists N; intros. diff --git a/theories/Reals/Rtrigo_reg.v b/theories/Reals/Rtrigo_reg.v index 854c0b4a..b105ca69 100644 --- a/theories/Reals/Rtrigo_reg.v +++ b/theories/Reals/Rtrigo_reg.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Rtrigo_reg.v 9245 2006-10-17 12:53:34Z notin $ i*) +(*i $Id: Rtrigo_reg.v 9551 2007-01-29 15:13:35Z bgregoir $ i*) Require Import Rbase. Require Import Rfunctions. @@ -99,7 +99,7 @@ Proof. apply pow_nonzero; assumption. replace (2 * S n)%nat with (S (S (2 * n))). simpl in |- *; ring. - ring_nat. + ring. apply Rle_ge; apply pow_le; left; apply (cond_pos r). apply Rle_ge; apply pow_le; left; apply (cond_pos r). apply Rabs_no_R0; apply pow_nonzero; assumption. @@ -280,7 +280,7 @@ Proof. apply pow_nonzero; assumption. replace (2 * S n)%nat with (S (S (2 * n))). simpl in |- *; ring. - ring_nat. + ring. apply Rle_ge; apply pow_le; left; apply (cond_pos r). apply Rle_ge; apply pow_le; left; apply (cond_pos r). apply Rabs_no_R0; apply pow_nonzero; assumption. diff --git a/theories/Reals/SeqProp.v b/theories/Reals/SeqProp.v index 133f2b89..96351618 100644 --- a/theories/Reals/SeqProp.v +++ b/theories/Reals/SeqProp.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: SeqProp.v 9245 2006-10-17 12:53:34Z notin $ i*) +(*i $Id: SeqProp.v 9551 2007-01-29 15:13:35Z bgregoir $ i*) Require Import Rbase. Require Import Rfunctions. @@ -1265,8 +1265,8 @@ Proof. apply lt_le_trans with 1%nat; [ apply lt_O_Sn | assumption ]. apply INR_fact_neq_0. apply not_O_INR; discriminate. - ring_nat. - ring_nat. + ring. + ring. unfold Vn in |- *; rewrite Rmult_assoc; unfold Rdiv in |- *; rewrite (Rmult_comm (Un 0%nat)); rewrite (Rmult_comm (Un n)). repeat apply Rmult_le_compat_l. @@ -1293,8 +1293,8 @@ Proof. apply le_INR; omega. apply INR_fact_neq_0. apply INR_fact_neq_0. - ring_nat. - ring_nat. + ring. + ring. intro; unfold Un in |- *; unfold Rdiv in |- *; apply Rmult_lt_0_compat. apply pow_lt; assumption. apply Rinv_0_lt_compat; apply lt_INR_0; apply neq_O_lt; red in |- *; intro; |