diff options
author | Samuel Mimram <smimram@debian.org> | 2006-06-16 14:41:51 +0000 |
---|---|---|
committer | Samuel Mimram <smimram@debian.org> | 2006-06-16 14:41:51 +0000 |
commit | e978da8c41d8a3c19a29036d9c569fbe2a4616b0 (patch) | |
tree | 0de2a907ee93c795978f3c843155bee91c11ed60 /theories/Reals | |
parent | 3ef7797ef6fc605dfafb32523261fe1b023aeecb (diff) |
Imported Upstream version 8.0pl3+8.1betaupstream/8.0pl3+8.1beta
Diffstat (limited to 'theories/Reals')
-rw-r--r-- | theories/Reals/Rbasic_fun.v | 8 | ||||
-rw-r--r-- | theories/Reals/RiemannInt_SF.v | 68 |
2 files changed, 33 insertions, 43 deletions
diff --git a/theories/Reals/Rbasic_fun.v b/theories/Reals/Rbasic_fun.v index 436a8011..0d1b06e2 100644 --- a/theories/Reals/Rbasic_fun.v +++ b/theories/Reals/Rbasic_fun.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Rbasic_fun.v 5920 2004-07-16 20:01:26Z herbelin $ i*) +(*i $Id: Rbasic_fun.v 8838 2006-05-22 09:26:36Z herbelin $ i*) (*********************************************************) (** Complements for the real numbers *) @@ -107,11 +107,13 @@ Lemma RmaxLess2 : forall r1 r2, r2 <= Rmax r1 r2. intros r1 r2; unfold Rmax in |- *; case (Rle_dec r1 r2); auto with real. Qed. -Lemma RmaxSym : forall p q:R, Rmax p q = Rmax q p. +Lemma Rmax_comm : forall p q:R, Rmax p q = Rmax q p. intros p q; unfold Rmax in |- *; case (Rle_dec p q); case (Rle_dec q p); auto; intros H1 H2; apply Rle_antisym; auto with real. Qed. +Notation RmaxSym := Rmax_comm (only parsing). + Lemma RmaxRmult : forall (p q:R) r, 0 <= r -> Rmax (r * p) (r * q) = r * Rmax p q. intros p q r H; unfold Rmax in |- *. @@ -467,4 +469,4 @@ intros p0; apply Rabs_right; auto with real zarith. intros p0; rewrite Rabs_Ropp. apply Rabs_right; auto with real zarith. Qed. -
\ No newline at end of file + diff --git a/theories/Reals/RiemannInt_SF.v b/theories/Reals/RiemannInt_SF.v index 71ab0b4c..b628de73 100644 --- a/theories/Reals/RiemannInt_SF.v +++ b/theories/Reals/RiemannInt_SF.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: RiemannInt_SF.v 6338 2004-11-22 09:10:51Z gregoire $ i*) +(*i $Id: RiemannInt_SF.v 8837 2006-05-22 08:41:18Z herbelin $ i*) Require Import Rbase. Require Import Rfunctions. @@ -218,17 +218,10 @@ Qed. Lemma StepFun_P5 : forall (a b:R) (f:R -> R) (l:Rlist), is_subdivision f a b l -> is_subdivision f b a l. -unfold is_subdivision in |- *; intros; elim X; intros; exists x; - unfold adapted_couple in p; decompose [and] p; clear p; - unfold adapted_couple in |- *; repeat split; try assumption. -rewrite H1; unfold Rmin in |- *; case (Rle_dec a b); intro; - case (Rle_dec b a); intro; try reflexivity. -apply Rle_antisym; assumption. -apply Rle_antisym; auto with real. -rewrite H0; unfold Rmax in |- *; case (Rle_dec a b); intro; - case (Rle_dec b a); intro; try reflexivity. -apply Rle_antisym; assumption. -apply Rle_antisym; auto with real. +destruct 1 as (x,(H0,(H1,(H2,(H3,H4))))); exists x; + repeat split; try assumption. +rewrite H1; apply Rmin_comm. +rewrite H2; apply Rmax_comm. Qed. Lemma StepFun_P6 : @@ -1483,19 +1476,16 @@ Lemma StepFun_P26 : is_subdivision f a b l1 -> is_subdivision g a b l1 -> is_subdivision (fun x:R => f x + l * g x) a b l1. -intros a b l f g l1; unfold is_subdivision in |- *; intros; elim X; elim X0; - intros; clear X X0; unfold adapted_couple in p, p0; - decompose [and] p; decompose [and] p0; clear p p0; - apply existT with (FF l1 (fun x:R => f x + l * g x)); - unfold adapted_couple in |- *; repeat split; try assumption. -apply StepFun_P20; apply neq_O_lt; red in |- *; intro; rewrite <- H8 in H7; - discriminate. -intros; unfold constant_D_eq, open_interval in |- *; - unfold constant_D_eq, open_interval in H9, H4; intros; +Proof. +intros a b l f g l1 (x0,(H0,(H1,(H2,(H3,H4))))) + (x,(_,(_,(_,(_,H9))))). + exists (FF l1 (fun x:R => f x + l * g x)); repeat split; try assumption. +apply StepFun_P20; rewrite H3; auto with arith. +intros i H8 x1 H10; unfold open_interval in H10, H9, H4; rewrite (H9 _ H8 _ H10); rewrite (H4 _ H8 _ H10); assert (H11 : l1 <> nil). -red in |- *; intro; rewrite H11 in H8; elim (lt_n_O _ H8). -assert (H12 := RList_P19 _ H11); elim H12; clear H12; intros r [r0 H12]; +red in |- *; intro H11; rewrite H11 in H8; elim (lt_n_O _ H8). +destruct (RList_P19 _ H11) as (r,(r0,H12)); rewrite H12; unfold FF in |- *; change (pos_Rl x0 i + l * pos_Rl x i = @@ -2142,18 +2132,16 @@ Qed. Lemma StepFun_P41 : forall (f:R -> R) (a b c:R), a <= b -> b <= c -> IsStepFun f a b -> IsStepFun f b c -> IsStepFun f a c. -unfold IsStepFun in |- *; unfold is_subdivision in |- *; intros; elim X; - clear X; intros l1 [lf1 H1]; elim X0; clear X0; intros l2 [lf2 H2]; - case (total_order_T a b); intro. -elim s; intro. -case (total_order_T b c); intro. -elim s0; intro. -split with (cons_Rlist l1 l2); split with (FF (cons_Rlist l1 l2) f); +Proof. +intros f a b c H H0 (l1,(lf1,H1)) (l2,(lf2,H2)); + destruct (total_order_T a b) as [[Hltab|Hab]|Hgtab]. + destruct (total_order_T b c) as [[Hltbc|Hbc]|Hgtbc]. +exists (cons_Rlist l1 l2); exists (FF (cons_Rlist l1 l2) f); apply StepFun_P40 with b lf1 lf2; assumption. -split with l1; split with lf1; rewrite b0 in H1; assumption. -elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H0 r)). -split with l2; split with lf2; rewrite <- b0 in H2; assumption. -elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H r)). +exists l1; exists lf1; rewrite Hbc in H1; assumption. +elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H0 Hgtbc)). +exists l2; exists lf2; rewrite <- Hab in H2; assumption. +elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H Hgtab)). Qed. Lemma StepFun_P42 : @@ -2431,14 +2419,14 @@ elim H; clear H; intros; unfold IsStepFun in X; unfold is_subdivision in X; adapted_couple f a b l1 lf1 -> a <= c <= b -> sigT (fun l:Rlist => sigT (fun l0:Rlist => adapted_couple f a c l l0))). -intros; unfold IsStepFun in |- *; unfold is_subdivision in |- *; eapply X. +intro X; unfold IsStepFun in |- *; unfold is_subdivision in |- *; eapply X. apply H2. split; assumption. clear f a b c H0 H H1 H2 l1 lf1; simple induction l1. intros; unfold adapted_couple in H; decompose [and] H; clear H; simpl in H4; discriminate. simple induction r0. -intros; assert (H1 : a = b). +intros X lf1 a b c f H H0; assert (H1 : a = b). unfold adapted_couple in H; decompose [and] H; clear H; simpl in H3; simpl in H2; assert (H7 : a <= b). elim H0; intros; apply Rle_trans with c; assumption. @@ -2452,7 +2440,7 @@ unfold Rmin in |- *; case (Rle_dec a b); intro; split with (cons r nil); split with lf1; assert (H2 : c = b). rewrite H1 in H0; elim H0; intros; apply Rle_antisym; assumption. rewrite H2; assumption. -intros; clear X; induction lf1 as [| r3 lf1 Hreclf1]. +intros r1 r2 _ X0 lf1 a b c f H H0; induction lf1 as [| r3 lf1 Hreclf1]. unfold adapted_couple in H; decompose [and] H; clear H; simpl in H4; discriminate. clear Hreclf1; assert (H1 : {c <= r1} + {r1 < c}). @@ -2546,13 +2534,13 @@ elim H; clear H; intros; unfold IsStepFun in X; unfold is_subdivision in X; adapted_couple f a b l1 lf1 -> a <= c <= b -> sigT (fun l:Rlist => sigT (fun l0:Rlist => adapted_couple f c b l l0))). -intros; unfold IsStepFun in |- *; unfold is_subdivision in |- *; eapply X; +intro X; unfold IsStepFun in |- *; unfold is_subdivision in |- *; eapply X; [ apply H2 | split; assumption ]. clear f a b c H0 H H1 H2 l1 lf1; simple induction l1. intros; unfold adapted_couple in H; decompose [and] H; clear H; simpl in H4; discriminate. simple induction r0. -intros; assert (H1 : a = b). +intros X lf1 a b c f H H0; assert (H1 : a = b). unfold adapted_couple in H; decompose [and] H; clear H; simpl in H3; simpl in H2; assert (H7 : a <= b). elim H0; intros; apply Rle_trans with c; assumption. @@ -2566,7 +2554,7 @@ unfold Rmin in |- *; case (Rle_dec a b); intro; split with (cons r nil); split with lf1; assert (H2 : c = b). rewrite H1 in H0; elim H0; intros; apply Rle_antisym; assumption. rewrite <- H2 in H1; rewrite <- H1; assumption. -intros; clear X; induction lf1 as [| r3 lf1 Hreclf1]. +intros r1 r2 _ X0 lf1 a b c f H H0; induction lf1 as [| r3 lf1 Hreclf1]. unfold adapted_couple in H; decompose [and] H; clear H; simpl in H4; discriminate. clear Hreclf1; assert (H1 : {c <= r1} + {r1 < c}). |