diff options
author | Samuel Mimram <smimram@debian.org> | 2006-07-13 14:28:31 +0000 |
---|---|---|
committer | Samuel Mimram <smimram@debian.org> | 2006-07-13 14:28:31 +0000 |
commit | de0085539583f59dc7c4bf4e272e18711d565466 (patch) | |
tree | 347e1d95a2df56f79a01b303e485563588179e91 /theories/Reals | |
parent | e978da8c41d8a3c19a29036d9c569fbe2a4616b0 (diff) |
Imported Upstream version 8.0pl3+8.1beta.2upstream/8.0pl3+8.1beta.2
Diffstat (limited to 'theories/Reals')
-rw-r--r-- | theories/Reals/Ranalysis1.v | 16 |
1 files changed, 13 insertions, 3 deletions
diff --git a/theories/Reals/Ranalysis1.v b/theories/Reals/Ranalysis1.v index 6d30e291..0148d0a2 100644 --- a/theories/Reals/Ranalysis1.v +++ b/theories/Reals/Ranalysis1.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Ranalysis1.v 8670 2006-03-28 22:16:14Z herbelin $ i*) +(*i $Id: Ranalysis1.v 9042 2006-07-11 22:06:48Z herbelin $ i*) Require Import Rbase. Require Import Rfunctions. @@ -27,6 +27,18 @@ Definition div_real_fct (a:R) f (x:R) : R := a / f x. Definition comp f1 f2 (x:R) : R := f1 (f2 x). Definition inv_fct f (x:R) : R := / f x. +Delimit Scope Rfun_scope with F. + +Arguments Scope plus_fct [Rfun_scope Rfun_scope R_scope]. +Arguments Scope mult_fct [Rfun_scope Rfun_scope R_scope]. +Arguments Scope minus_fct [Rfun_scope Rfun_scope R_scope]. +Arguments Scope div_fct [Rfun_scope Rfun_scope R_scope]. +Arguments Scope inv_fct [Rfun_scope R_scope]. +Arguments Scope opp_fct [Rfun_scope R_scope]. +Arguments Scope mult_real_fct [R_scope Rfun_scope R_scope]. +Arguments Scope div_real_fct [R_scope Rfun_scope R_scope]. +Arguments Scope comp [Rfun_scope Rfun_scope R_scope]. + Infix "+" := plus_fct : Rfun_scope. Notation "- x" := (opp_fct x) : Rfun_scope. Infix "*" := mult_fct : Rfun_scope. @@ -36,8 +48,6 @@ Notation Local "f1 'o' f2" := (comp f1 f2) (at level 20, right associativity) : Rfun_scope. Notation "/ x" := (inv_fct x) : Rfun_scope. -Delimit Scope Rfun_scope with F. - Definition fct_cte (a x:R) : R := a. Definition id (x:R) := x. |