summaryrefslogtreecommitdiff
path: root/theories/Reals/SeqSeries.v
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2010-07-21 09:46:51 +0200
committerGravatar Stephane Glondu <steph@glondu.net>2010-07-21 09:46:51 +0200
commit5b7eafd0f00a16d78f99a27f5c7d5a0de77dc7e6 (patch)
tree631ad791a7685edafeb1fb2e8faeedc8379318ae /theories/Reals/SeqSeries.v
parentda178a880e3ace820b41d38b191d3785b82991f5 (diff)
Imported Upstream snapshot 8.3~beta0+13298
Diffstat (limited to 'theories/Reals/SeqSeries.v')
-rw-r--r--theories/Reals/SeqSeries.v12
1 files changed, 6 insertions, 6 deletions
diff --git a/theories/Reals/SeqSeries.v b/theories/Reals/SeqSeries.v
index 9680b75e..dbfc85bb 100644
--- a/theories/Reals/SeqSeries.v
+++ b/theories/Reals/SeqSeries.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: SeqSeries.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
+(*i $Id$ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -25,7 +25,7 @@ Open Local Scope R_scope.
(**********)
Lemma sum_maj1 :
- forall (fn:nat -> R -> R) (An:nat -> R) (x l1 l2:R)
+ forall (fn:nat -> R -> R) (An:nat -> R) (x l1 l2:R)
(N:nat),
Un_cv (fun n:nat => SP fn n x) l1 ->
Un_cv (fun n:nat => sum_f_R0 An n) l2 ->
@@ -92,7 +92,7 @@ Proof.
(sum_f_R0 (fun l:nat => fn (S N + l)%nat x) n -
(l1 - sum_f_R0 (fun k:nat => fn k x) N)) with
(sum_f_R0 (fun k:nat => fn k x) N +
- sum_f_R0 (fun l:nat => fn (S N + l)%nat x) n - l1);
+ sum_f_R0 (fun l:nat => fn (S N + l)%nat x) n - l1);
[ idtac | ring ].
replace
(sum_f_R0 (fun k:nat => fn k x) N +
@@ -170,7 +170,7 @@ Proof.
(sum_f_R0 (fun l:nat => fn (S N + l)%nat x) n -
(l1 - sum_f_R0 (fun k:nat => fn k x) N)) with
(sum_f_R0 (fun k:nat => fn k x) N +
- sum_f_R0 (fun l:nat => fn (S N + l)%nat x) n - l1);
+ sum_f_R0 (fun l:nat => fn (S N + l)%nat x) n - l1);
[ idtac | ring ].
replace
(sum_f_R0 (fun k:nat => fn k x) N +
@@ -241,13 +241,13 @@ Proof.
apply Rle_ge; apply cond_pos_sum; intro.
elim (H (S n + n0)%nat); intros; assumption.
rewrite b; unfold R_dist in |- *; unfold Rminus in |- *;
- do 2 rewrite Rplus_opp_r; rewrite Rabs_R0; right;
+ do 2 rewrite Rplus_opp_r; rewrite Rabs_R0; right;
reflexivity.
rewrite (tech2 An m n); [ idtac | assumption ].
rewrite (tech2 Bn m n); [ idtac | assumption ].
unfold R_dist in |- *; unfold Rminus in |- *; do 2 rewrite Rplus_assoc;
rewrite (Rplus_comm (sum_f_R0 An m)); rewrite (Rplus_comm (sum_f_R0 Bn m));
- do 2 rewrite Rplus_assoc; do 2 rewrite Rplus_opp_l;
+ do 2 rewrite Rplus_assoc; do 2 rewrite Rplus_opp_l;
do 2 rewrite Rplus_0_r; repeat rewrite Rabs_right.
apply sum_Rle; intros.
elim (H (S m + n0)%nat); intros; apply H8.