summaryrefslogtreecommitdiff
path: root/theories/Reals/Rseries.v
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <smimram@debian.org>2008-07-25 15:13:01 +0200
committerGravatar Samuel Mimram <smimram@debian.org>2008-07-25 15:13:01 +0200
commitd18b6226c9ecdb0ebbef6d29fb9f0c09ba78a5fa (patch)
treef9a2c15acb3448f4e78f4e8b7328f751fb144aa0 /theories/Reals/Rseries.v
parent4892a9c7ae62f552fa42701788b2bd08a7f3bc08 (diff)
parenta0cfa4f118023d35b767a999d5a2ac4b082857b4 (diff)
Merge commit 'upstream/8.2.beta3+dfsg'
Diffstat (limited to 'theories/Reals/Rseries.v')
-rw-r--r--theories/Reals/Rseries.v6
1 files changed, 3 insertions, 3 deletions
diff --git a/theories/Reals/Rseries.v b/theories/Reals/Rseries.v
index 38c39bae..702aafa4 100644
--- a/theories/Reals/Rseries.v
+++ b/theories/Reals/Rseries.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rseries.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Rseries.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -194,14 +194,14 @@ Section Isequence.
Variable An : nat -> R.
(*********)
- Definition Pser (x l:R) : Prop := infinit_sum (fun n:nat => An n * x ^ n) l.
+ Definition Pser (x l:R) : Prop := infinite_sum (fun n:nat => An n * x ^ n) l.
End Isequence.
Lemma GP_infinite :
forall x:R, Rabs x < 1 -> Pser (fun n:nat => 1) x (/ (1 - x)).
Proof.
- intros; unfold Pser in |- *; unfold infinit_sum in |- *; intros;
+ intros; unfold Pser in |- *; unfold infinite_sum in |- *; intros;
elim (Req_dec x 0).
intros; exists 0%nat; intros; rewrite H1; rewrite Rminus_0_r; rewrite Rinv_1;
cut (sum_f_R0 (fun n0:nat => 1 * 0 ^ n0) n = 1).