summaryrefslogtreecommitdiff
path: root/theories/Reals/RiemannInt.v
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2010-07-21 09:46:51 +0200
committerGravatar Stephane Glondu <steph@glondu.net>2010-07-21 09:46:51 +0200
commit5b7eafd0f00a16d78f99a27f5c7d5a0de77dc7e6 (patch)
tree631ad791a7685edafeb1fb2e8faeedc8379318ae /theories/Reals/RiemannInt.v
parentda178a880e3ace820b41d38b191d3785b82991f5 (diff)
Imported Upstream snapshot 8.3~beta0+13298
Diffstat (limited to 'theories/Reals/RiemannInt.v')
-rw-r--r--theories/Reals/RiemannInt.v217
1 files changed, 109 insertions, 108 deletions
diff --git a/theories/Reals/RiemannInt.v b/theories/Reals/RiemannInt.v
index 8d069e2d..ae2c3d77 100644
--- a/theories/Reals/RiemannInt.v
+++ b/theories/Reals/RiemannInt.v
@@ -1,3 +1,4 @@
+(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
@@ -6,7 +7,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: RiemannInt.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
+(*i $Id$ i*)
Require Import Rfunctions.
Require Import SeqSeries.
@@ -32,8 +33,8 @@ Definition Riemann_integrable (f:R -> R) (a b:R) : Type :=
Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\
Rabs (RiemannInt_SF psi) < eps } }.
-Definition phi_sequence (un:nat -> posreal) (f:R -> R)
- (a b:R) (pr:Riemann_integrable f a b) (n:nat) :=
+Definition phi_sequence (un:nat -> posreal) (f:R -> R)
+ (a b:R) (pr:Riemann_integrable f a b) (n:nat) :=
projT1 (pr (un n)).
Lemma phi_sequence_prop :
@@ -54,7 +55,7 @@ Lemma RiemannInt_P1 :
Proof.
unfold Riemann_integrable in |- *; intros; elim (X eps); clear X; intros;
elim p; clear p; intros; exists (mkStepFun (StepFun_P6 (pre x)));
- exists (mkStepFun (StepFun_P6 (pre x0)));
+ exists (mkStepFun (StepFun_P6 (pre x0)));
elim p; clear p; intros; split.
intros; apply (H t); elim H1; clear H1; intros; split;
[ apply Rle_trans with (Rmin b a); try assumption; right;
@@ -97,7 +98,7 @@ Proof.
elim (H _ H3); intros N0 H4; exists N0; intros; unfold R_dist in |- *;
unfold R_dist in H4; elim (H1 n); elim (H1 m); intros;
replace (RiemannInt_SF (vn n) - RiemannInt_SF (vn m)) with
- (RiemannInt_SF (vn n) + -1 * RiemannInt_SF (vn m));
+ (RiemannInt_SF (vn n) + -1 * RiemannInt_SF (vn m));
[ idtac | ring ]; rewrite <- StepFun_P30;
apply Rle_lt_trans with
(RiemannInt_SF
@@ -131,7 +132,7 @@ Proof.
apply Rplus_le_compat; apply RRle_abs.
replace (pos (un n)) with (un n - 0); [ idtac | ring ];
replace (pos (un m)) with (un m - 0); [ idtac | ring ];
- rewrite (double_var eps); apply Rplus_lt_compat; apply H4;
+ rewrite (double_var eps); apply Rplus_lt_compat; apply H4;
assumption.
Qed.
@@ -179,8 +180,8 @@ Proof.
rewrite Rabs_Ropp in H4; apply H4.
apply H4.
assert (H3 := RiemannInt_P2 _ _ _ _ H H1 H2); elim H3; intros;
- exists (- x); unfold Un_cv in |- *; unfold Un_cv in p;
- intros; elim (p _ H4); intros; exists x0; intros;
+ exists (- x); unfold Un_cv in |- *; unfold Un_cv in p;
+ intros; elim (p _ H4); intros; exists x0; intros;
generalize (H5 _ H6); unfold R_dist, RiemannInt_SF in |- *;
case (Rle_dec b a); case (Rle_dec a b); intros.
elim n; assumption.
@@ -189,7 +190,7 @@ Proof.
(Int_SF (subdivision_val (mkStepFun (StepFun_P6 (pre (vn n0)))))
(subdivision (mkStepFun (StepFun_P6 (pre (vn n0))))));
[ unfold Rminus in |- *; rewrite Ropp_involutive; rewrite <- Rabs_Ropp;
- rewrite Ropp_plus_distr; rewrite Ropp_involutive;
+ rewrite Ropp_plus_distr; rewrite Ropp_involutive;
apply H7
| symmetry in |- *; apply StepFun_P17 with (fe (vn n0)) a b;
[ apply StepFun_P1
@@ -200,7 +201,7 @@ Proof.
Qed.
Lemma RiemannInt_exists :
- forall (f:R -> R) (a b:R) (pr:Riemann_integrable f a b)
+ forall (f:R -> R) (a b:R) (pr:Riemann_integrable f a b)
(un:nat -> posreal),
Un_cv un 0 ->
{ l:R | Un_cv (fun N:nat => RiemannInt_SF (phi_sequence un pr N)) l }.
@@ -281,7 +282,7 @@ Proof.
assumption.
replace (pos (un n)) with (Rabs (un n - 0));
[ apply H; unfold ge in |- *; apply le_trans with N; try assumption;
- unfold N in |- *; apply le_trans with (max N0 N1);
+ unfold N in |- *; apply le_trans with (max N0 N1);
apply le_max_l
| unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right;
apply Rle_ge; left; apply (cond_pos (un n)) ].
@@ -346,7 +347,7 @@ Proof.
unfold N in |- *; apply le_trans with (max N0 N1);
[ apply le_max_r | apply le_max_l ]
| unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0;
- rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge;
+ rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge;
left; apply (cond_pos (vn n)) ].
apply Rlt_trans with (pos (un n)).
elim H6; intros; apply Rle_lt_trans with (Rabs (RiemannInt_SF psi_un)).
@@ -354,7 +355,7 @@ Proof.
assumption.
replace (pos (un n)) with (Rabs (un n - 0));
[ apply H; unfold ge in |- *; apply le_trans with N; try assumption;
- unfold N in |- *; apply le_trans with (max N0 N1);
+ unfold N in |- *; apply le_trans with (max N0 N1);
apply le_max_l
| unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right;
apply Rle_ge; left; apply (cond_pos (un n)) ].
@@ -382,7 +383,7 @@ Proof.
apply le_IZR; left; apply Rlt_trans with (/ eps);
[ apply Rinv_0_lt_compat; assumption | assumption ].
elim (IZN _ H2); intros; exists x; intros; unfold R_dist in |- *;
- simpl in |- *; unfold Rminus in |- *; rewrite Ropp_0;
+ simpl in |- *; unfold Rminus in |- *; rewrite Ropp_0;
rewrite Rplus_0_r; assert (H5 : 0 < INR n + 1).
apply Rplus_le_lt_0_compat; [ apply pos_INR | apply Rlt_0_1 ].
rewrite Rabs_right;
@@ -406,7 +407,7 @@ Proof.
red in |- *; intro; rewrite H6 in H; elim (Rlt_irrefl _ H).
Qed.
-(**********)
+(**********)
Definition RiemannInt (f:R -> R) (a b:R) (pr:Riemann_integrable f a b) : R :=
let (a,_) := RiemannInt_exists pr RinvN RinvN_cv in a.
@@ -416,14 +417,14 @@ Lemma RiemannInt_P5 :
Proof.
intros; unfold RiemannInt in |- *;
case (RiemannInt_exists pr1 RinvN RinvN_cv);
- case (RiemannInt_exists pr2 RinvN RinvN_cv); intros;
+ case (RiemannInt_exists pr2 RinvN RinvN_cv); intros;
eapply UL_sequence;
[ apply u0
| apply RiemannInt_P4 with pr2 RinvN; apply RinvN_cv || assumption ].
Qed.
(***************************************)
-(** C°([a,b]) is included in L1([a,b]) *)
+(** C°([a,b]) is included in L1([a,b]) *)
(***************************************)
Lemma maxN :
@@ -452,8 +453,8 @@ Proof.
apply le_IZR; simpl in |- *; left; apply Rle_lt_trans with ((b - a) / del);
assumption.
assert (H5 := IZN _ H4); elim H5; clear H5; intros N H5;
- unfold Nbound in |- *; exists N; intros; unfold I in H6;
- apply INR_le; rewrite H5 in H2; rewrite <- INR_IZR_INZ in H2;
+ unfold Nbound in |- *; exists N; intros; unfold I in H6;
+ apply INR_le; rewrite H5 in H2; rewrite <- INR_IZR_INZ in H2;
left; apply Rle_lt_trans with ((b - a) / del); try assumption;
apply Rmult_le_reg_l with (pos del);
[ apply (cond_pos del)
@@ -465,7 +466,7 @@ Proof.
elim (Rlt_irrefl _ H7) ] ].
Qed.
-Fixpoint SubEquiN (N:nat) (x y:R) (del:posreal) {struct N} : Rlist :=
+Fixpoint SubEquiN (N:nat) (x y:R) (del:posreal) : Rlist :=
match N with
| O => cons y nil
| S p => cons x (SubEquiN p (x + del) y del)
@@ -498,11 +499,11 @@ Proof.
a <= y <= b -> Rabs (x - y) < l -> Rabs (f x - f y) < eps));
assert (H1 : bound E).
unfold bound in |- *; exists (b - a); unfold is_upper_bound in |- *; intros;
- unfold E in H1; elim H1; clear H1; intros H1 _; elim H1;
+ unfold E in H1; elim H1; clear H1; intros H1 _; elim H1;
intros; assumption.
assert (H2 : exists x : R, E x).
assert (H2 := Heine f (fun x:R => a <= x <= b) (compact_P3 a b) H0 eps);
- elim H2; intros; exists (Rmin x (b - a)); unfold E in |- *;
+ elim H2; intros; exists (Rmin x (b - a)); unfold E in |- *;
split;
[ split;
[ unfold Rmin in |- *; case (Rle_dec x (b - a)); intro;
@@ -530,7 +531,7 @@ Proof.
unfold is_lub in p; unfold is_upper_bound in p; elim p; clear p; intros;
split.
elim H2; intros; assert (H7 := H4 _ H6); unfold E in H6; elim H6; clear H6;
- intros H6 _; elim H6; intros; apply Rlt_le_trans with x0;
+ intros H6 _; elim H6; intros; apply Rlt_le_trans with x0;
assumption.
apply H5; intros; unfold E in H6; elim H6; clear H6; intros H6 _; elim H6;
intros; assumption.
@@ -579,7 +580,7 @@ Proof.
| intros;
change
(pos_Rl (SubEquiN (S n) (a0 + del0) b del0)
- (pred (Rlength (SubEquiN (S n) (a0 + del0) b del0))) = b)
+ (pred (Rlength (SubEquiN (S n) (a0 + del0) b del0))) = b)
in |- *; apply H ] ].
Qed.
@@ -633,7 +634,7 @@ Proof.
2: apply le_lt_n_Sm; assumption.
apply Rplus_le_compat_l; rewrite S_INR; rewrite Rmult_plus_distr_r;
pattern (INR i * del) at 1 in |- *; rewrite <- Rplus_0_r;
- apply Rplus_le_compat_l; rewrite Rmult_1_l; left;
+ apply Rplus_le_compat_l; rewrite Rmult_1_l; left;
apply (cond_pos del).
Qed.
@@ -686,7 +687,7 @@ Proof.
[ reflexivity | elim n; left; assumption ].
elim (Heine_cor2 H0 (mkposreal _ H1)); intros del H4;
elim (SubEqui_P9 del f H); intros phi [H5 H6]; split with phi;
- split with (mkStepFun (StepFun_P4 a b (eps / (2 * (b - a)))));
+ split with (mkStepFun (StepFun_P4 a b (eps / (2 * (b - a)))));
split.
2: rewrite StepFun_P18; unfold Rdiv in |- *; rewrite Rinv_mult_distr.
2: do 2 rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
@@ -731,7 +732,7 @@ Proof.
apply Rplus_lt_reg_r with (pos_Rl (SubEqui del H) (max_N del H)).
replace
(pos_Rl (SubEqui del H) (max_N del H) +
- (t - pos_Rl (SubEqui del H) (max_N del H))) with t;
+ (t - pos_Rl (SubEqui del H) (max_N del H))) with t;
[ idtac | ring ]; apply Rlt_le_trans with b.
rewrite H14 in H12;
assert (H13 : S (max_N del H) = pred (Rlength (SubEqui del H))).
@@ -760,20 +761,20 @@ Proof.
intros; assumption.
assert (H4 : Nbound I).
unfold Nbound in |- *; exists (S (max_N del H)); intros; unfold max_N in |- *;
- case (maxN del H); intros; elim a0; clear a0; intros _ H5;
+ case (maxN del H); intros; elim a0; clear a0; intros _ H5;
apply INR_le; apply Rmult_le_reg_l with (pos del).
apply (cond_pos del).
apply Rplus_le_reg_l with a; do 2 rewrite (Rmult_comm del);
apply Rle_trans with t0; unfold I in H4; try assumption;
- apply Rle_trans with b; try assumption; elim H8; intros;
+ apply Rle_trans with b; try assumption; elim H8; intros;
assumption.
elim (Nzorn H1 H4); intros N [H5 H6]; assert (H7 : (N < S (max_N del H))%nat).
unfold max_N in |- *; case (maxN del H); intros; apply INR_lt;
apply Rmult_lt_reg_l with (pos del).
apply (cond_pos del).
apply Rplus_lt_reg_r with a; do 2 rewrite (Rmult_comm del);
- apply Rle_lt_trans with t0; unfold I in H5; try assumption;
- elim a0; intros; apply Rlt_le_trans with b; try assumption;
+ apply Rle_lt_trans with t0; unfold I in H5; try assumption;
+ elim a0; intros; apply Rlt_le_trans with b; try assumption;
elim H8; intros.
elim H11; intro.
assumption.
@@ -1027,7 +1028,7 @@ Proof.
unfold Riemann_integrable in |- *; intros f g; intros; case (Req_EM_T l 0);
intro.
elim (X eps); intros; split with x; elim p; intros; split with x0; elim p0;
- intros; split; try assumption; rewrite e; intros;
+ intros; split; try assumption; rewrite e; intros;
rewrite Rmult_0_l; rewrite Rplus_0_r; apply H; assumption.
assert (H : 0 < eps / 2).
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
@@ -1038,8 +1039,8 @@ Proof.
| apply Rinv_0_lt_compat; apply Rmult_lt_0_compat;
[ prove_sup0 | apply Rabs_pos_lt; assumption ] ].
elim (X (mkposreal _ H)); intros; elim (X0 (mkposreal _ H0)); intros;
- split with (mkStepFun (StepFun_P28 l x x0)); elim p0;
- elim p; intros; split with (mkStepFun (StepFun_P28 (Rabs l) x1 x2));
+ split with (mkStepFun (StepFun_P28 l x x0)); elim p0;
+ elim p; intros; split with (mkStepFun (StepFun_P28 (Rabs l) x1 x2));
elim p1; elim p2; clear p1 p2 p0 p X X0; intros; split.
intros; simpl in |- *;
apply Rle_trans with (Rabs (f t - x t) + Rabs (l * (g t - x0 t))).
@@ -1098,7 +1099,7 @@ Proof.
replace eps with (2 * (eps / 3) + eps / 3).
apply Rplus_lt_compat.
replace (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n)) with
- (RiemannInt_SF (phi2 n) + -1 * RiemannInt_SF (phi1 n));
+ (RiemannInt_SF (phi2 n) + -1 * RiemannInt_SF (phi1 n));
[ idtac | ring ].
rewrite <- StepFun_P30.
apply Rle_lt_trans with
@@ -1146,7 +1147,7 @@ Proof.
apply H; unfold ge in |- *; apply le_trans with N; try assumption;
unfold N in |- *; apply le_max_l.
unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0;
- rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge;
+ rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge;
left; apply (cond_pos (un n)).
unfold R_dist in H2; apply H2; unfold ge in |- *; apply le_trans with N;
try assumption; unfold N in |- *; apply le_max_r.
@@ -1172,7 +1173,7 @@ Proof.
replace eps with (2 * (eps / 3) + eps / 3).
apply Rplus_lt_compat.
replace (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n)) with
- (RiemannInt_SF (phi2 n) + -1 * RiemannInt_SF (phi1 n));
+ (RiemannInt_SF (phi2 n) + -1 * RiemannInt_SF (phi1 n));
[ idtac | ring ].
rewrite <- StepFun_P30.
rewrite StepFun_P39.
@@ -1238,7 +1239,7 @@ Proof.
apply H; unfold ge in |- *; apply le_trans with N; try assumption;
unfold N in |- *; apply le_max_l.
unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0;
- rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge;
+ rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge;
left; apply (cond_pos (un n)).
unfold R_dist in H2; apply H2; unfold ge in |- *; apply le_trans with N;
try assumption; unfold N in |- *; apply le_max_r.
@@ -1258,7 +1259,7 @@ Proof.
intro f; intros; case (Req_dec l 0); intro.
pattern l at 2 in |- *; rewrite H0; rewrite Rmult_0_l; rewrite Rplus_0_r;
unfold RiemannInt in |- *; case (RiemannInt_exists pr3 RinvN RinvN_cv);
- case (RiemannInt_exists pr1 RinvN RinvN_cv); intros;
+ case (RiemannInt_exists pr1 RinvN RinvN_cv); intros;
eapply UL_sequence;
[ apply u0
| set (psi1 := fun n:nat => proj1_sig (phi_sequence_prop RinvN pr1 n));
@@ -1283,13 +1284,13 @@ Proof.
intros; apply u.
unfold Un_cv in |- *; intros; unfold RiemannInt in |- *;
case (RiemannInt_exists pr1 RinvN RinvN_cv);
- case (RiemannInt_exists pr2 RinvN RinvN_cv); unfold Un_cv in |- *;
+ case (RiemannInt_exists pr2 RinvN RinvN_cv); unfold Un_cv in |- *;
intros; assert (H2 : 0 < eps / 5).
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (u0 _ H2); clear u0; intros N0 H3; assert (H4 := RinvN_cv);
unfold Un_cv in H4; elim (H4 _ H2); clear H4 H2; intros N1 H4;
- assert (H5 : 0 < eps / (5 * Rabs l)).
+ assert (H5 : 0 < eps / (5 * Rabs l)).
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
[ assumption
| apply Rinv_0_lt_compat; apply Rmult_lt_0_compat;
@@ -1380,7 +1381,7 @@ Proof.
(RiemannInt_SF (phi_sequence RinvN pr3 n) +
-1 *
(RiemannInt_SF (phi_sequence RinvN pr1 n) +
- l * RiemannInt_SF (phi_sequence RinvN pr2 n)));
+ l * RiemannInt_SF (phi_sequence RinvN pr2 n)));
[ idtac | ring ]; do 2 rewrite <- StepFun_P30; assert (H10 : Rmin a b = a).
unfold Rmin in |- *; case (Rle_dec a b); intro;
[ reflexivity | elim n0; assumption ].
@@ -1421,7 +1422,7 @@ Proof.
rewrite Rplus_assoc; apply Rplus_le_compat.
elim (H9 n); intros; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr;
apply H13.
- elim H12; intros; split; left; assumption.
+ elim H12; intros; split; left; assumption.
apply Rle_trans with
(Rabs (f x1 - phi_sequence RinvN pr1 n x1) +
Rabs l * Rabs (g x1 - phi_sequence RinvN pr2 n x1)).
@@ -1487,7 +1488,7 @@ Proof.
[ unfold Rdiv in |- *; do 2 rewrite Rmult_plus_distr_l;
do 3 rewrite (Rmult_comm 5); repeat rewrite Rmult_assoc;
rewrite <- Rinv_l_sym; [ ring | discrR ]
- | discrR ].
+ | discrR ].
Qed.
Lemma RiemannInt_P13 :
@@ -1517,7 +1518,7 @@ Proof.
split with (mkStepFun (StepFun_P4 a b c));
split with (mkStepFun (StepFun_P4 a b 0)); split;
[ intros; simpl in |- *; unfold Rminus in |- *; rewrite Rplus_opp_r;
- rewrite Rabs_R0; unfold fct_cte in |- *; right;
+ rewrite Rabs_R0; unfold fct_cte in |- *; right;
reflexivity
| rewrite StepFun_P18; rewrite Rmult_0_l; rewrite Rabs_R0;
apply (cond_pos eps) ].
@@ -1546,12 +1547,12 @@ Proof.
elim H1; clear H1; intros psi1 H1;
set (phi2 := fun n:nat => mkStepFun (StepFun_P4 a b c));
set (psi2 := fun n:nat => mkStepFun (StepFun_P4 a b 0));
- apply RiemannInt_P11 with f RinvN phi2 psi2 psi1;
+ apply RiemannInt_P11 with f RinvN phi2 psi2 psi1;
try assumption.
apply RinvN_cv.
intro; split.
intros; unfold f in |- *; simpl in |- *; unfold Rminus in |- *;
- rewrite Rplus_opp_r; rewrite Rabs_R0; unfold fct_cte in |- *;
+ rewrite Rplus_opp_r; rewrite Rabs_R0; unfold fct_cte in |- *;
right; reflexivity.
unfold psi2 in |- *; rewrite StepFun_P18; rewrite Rmult_0_l; rewrite Rabs_R0;
apply (cond_pos (RinvN n)).
@@ -1594,7 +1595,7 @@ Proof.
apply Rmult_eq_reg_l with 2;
[ unfold Rdiv in |- *; do 2 rewrite (Rmult_comm 2);
rewrite (Rmult_plus_distr_r (- l2) ((l1 + l2) * / 2) 2);
- repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym;
+ repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym;
[ ring | discrR ]
| discrR ].
apply Ropp_lt_cancel; apply Rplus_lt_reg_r with l1;
@@ -1637,7 +1638,7 @@ Proof.
Rabs (Rabs (f t) - phi3 n t) <= psi3 n t) /\
Rabs (RiemannInt_SF (psi3 n)) < RinvN n)).
split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr2 n)); intro;
- apply (proj2_sig (phi_sequence_prop RinvN pr2 n)).
+ apply (proj2_sig (phi_sequence_prop RinvN pr2 n)).
assert
(H1 :
exists psi2 : nat -> StepFun a b,
@@ -1674,7 +1675,7 @@ Lemma RiemannInt_P18 :
Proof.
intro f; intros; unfold RiemannInt in |- *;
case (RiemannInt_exists pr1 RinvN RinvN_cv);
- case (RiemannInt_exists pr2 RinvN RinvN_cv); intros;
+ case (RiemannInt_exists pr2 RinvN RinvN_cv); intros;
eapply UL_sequence.
apply u0.
set (phi1 := fun N:nat => phi_sequence RinvN pr1 N);
@@ -1688,7 +1689,7 @@ Proof.
Rabs (f t - phi1 n t) <= psi1 n t) /\
Rabs (RiemannInt_SF (psi1 n)) < RinvN n)).
split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr1 n)); intro;
- apply (proj2_sig (phi_sequence_prop RinvN pr1 n)).
+ apply (proj2_sig (phi_sequence_prop RinvN pr1 n)).
elim H1; clear H1; intros psi1 H1;
set (phi2 := fun N:nat => phi_sequence RinvN pr2 N).
set
@@ -1712,10 +1713,10 @@ Proof.
Rmin a b <= t /\ t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\
Rabs (RiemannInt_SF (psi2 n)) < RinvN n)).
split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr2 n)); intro;
- apply (proj2_sig (phi_sequence_prop RinvN pr2 n)).
+ apply (proj2_sig (phi_sequence_prop RinvN pr2 n)).
elim H2; clear H2; intros psi2 H2;
- apply RiemannInt_P11 with f RinvN phi2_m psi2 psi1;
- try assumption.
+ apply RiemannInt_P11 with f RinvN phi2_m psi2 psi1;
+ try assumption.
apply RinvN_cv.
intro; elim (H2 n); intros; split; try assumption.
intros; unfold phi2_m in |- *; simpl in |- *; unfold phi2_aux in |- *;
@@ -1764,11 +1765,11 @@ Proof.
right; reflexivity.
intro; assert (H2 := pre (phi2 N)); unfold IsStepFun in H2;
unfold is_subdivision in H2; elim H2; clear H2; intros l [lf H2];
- split with l; split with lf; unfold adapted_couple in H2;
- decompose [and] H2; clear H2; unfold adapted_couple in |- *;
+ split with l; split with lf; unfold adapted_couple in H2;
+ decompose [and] H2; clear H2; unfold adapted_couple in |- *;
repeat split; try assumption.
intros; assert (H9 := H8 i H2); unfold constant_D_eq, open_interval in H9;
- unfold constant_D_eq, open_interval in |- *; intros;
+ unfold constant_D_eq, open_interval in |- *; intros;
rewrite <- (H9 x1 H7); assert (H10 : a <= pos_Rl l i).
replace a with (Rmin a b).
rewrite <- H5; elim (RList_P6 l); intros; apply H10.
@@ -1808,7 +1809,7 @@ Proof.
(RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) pr2 pr1))).
apply
(RiemannInt_P17 (RiemannInt_P10 (-1) pr2 pr1)
- (RiemannInt_P16 (RiemannInt_P10 (-1) pr2 pr1)));
+ (RiemannInt_P16 (RiemannInt_P10 (-1) pr2 pr1)));
assumption.
replace (RiemannInt pr2 + - RiemannInt pr1) with
(RiemannInt (RiemannInt_P10 (-1) pr2 pr1)).
@@ -1833,7 +1834,7 @@ Proof.
Qed.
Definition primitive (f:R -> R) (a b:R) (h:a <= b)
- (pr:forall x:R, a <= x -> x <= b -> Riemann_integrable f a x)
+ (pr:forall x:R, a <= x -> x <= b -> Riemann_integrable f a x)
(x:R) : R :=
match Rle_dec a x with
| left r =>
@@ -1977,20 +1978,20 @@ Proof.
| elim n0; left; assumption ].
apply StepFun_P46 with b; assumption.
assert (H3 := pre psi2); unfold IsStepFun in H3; unfold is_subdivision in H3;
- elim H3; clear H3; intros l1 [lf1 H3]; split with l1;
- split with lf1; unfold adapted_couple in H3; decompose [and] H3;
- clear H3; unfold adapted_couple in |- *; repeat split;
+ elim H3; clear H3; intros l1 [lf1 H3]; split with l1;
+ split with lf1; unfold adapted_couple in H3; decompose [and] H3;
+ clear H3; unfold adapted_couple in |- *; repeat split;
try assumption.
intros; assert (H9 := H8 i H3); unfold constant_D_eq, open_interval in |- *;
- unfold constant_D_eq, open_interval in H9; intros;
+ unfold constant_D_eq, open_interval in H9; intros;
rewrite <- (H9 x H7); unfold psi3 in |- *; assert (H10 : b < x).
apply Rle_lt_trans with (pos_Rl l1 i).
replace b with (Rmin b c).
rewrite <- H5; elim (RList_P6 l1); intros; apply H10; try assumption.
apply le_O_n.
apply lt_trans with (pred (Rlength l1)); try assumption; apply lt_pred_n_n;
- apply neq_O_lt; red in |- *; intro; rewrite <- H12 in H6;
- discriminate.
+ apply neq_O_lt; red in |- *; intro; rewrite <- H12 in H6;
+ discriminate.
unfold Rmin in |- *; case (Rle_dec b c); intro;
[ reflexivity | elim n; assumption ].
elim H7; intros; assumption.
@@ -2000,19 +2001,19 @@ Proof.
| elim n; apply Rle_trans with b; [ assumption | left; assumption ]
| elim n0; apply Rle_trans with b; [ assumption | left; assumption ] ].
assert (H3 := pre psi1); unfold IsStepFun in H3; unfold is_subdivision in H3;
- elim H3; clear H3; intros l1 [lf1 H3]; split with l1;
- split with lf1; unfold adapted_couple in H3; decompose [and] H3;
- clear H3; unfold adapted_couple in |- *; repeat split;
+ elim H3; clear H3; intros l1 [lf1 H3]; split with l1;
+ split with lf1; unfold adapted_couple in H3; decompose [and] H3;
+ clear H3; unfold adapted_couple in |- *; repeat split;
try assumption.
intros; assert (H9 := H8 i H3); unfold constant_D_eq, open_interval in |- *;
- unfold constant_D_eq, open_interval in H9; intros;
+ unfold constant_D_eq, open_interval in H9; intros;
rewrite <- (H9 x H7); unfold psi3 in |- *; assert (H10 : x <= b).
apply Rle_trans with (pos_Rl l1 (S i)).
elim H7; intros; left; assumption.
replace b with (Rmax a b).
rewrite <- H4; elim (RList_P6 l1); intros; apply H10; try assumption.
apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H12 in H6;
- discriminate.
+ discriminate.
unfold Rmax in |- *; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
assert (H11 : a <= x).
@@ -2021,8 +2022,8 @@ Proof.
rewrite <- H5; elim (RList_P6 l1); intros; apply H11; try assumption.
apply le_O_n.
apply lt_trans with (pred (Rlength l1)); try assumption; apply lt_pred_n_n;
- apply neq_O_lt; red in |- *; intro; rewrite <- H13 in H6;
- discriminate.
+ apply neq_O_lt; red in |- *; intro; rewrite <- H13 in H6;
+ discriminate.
unfold Rmin in |- *; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
left; elim H7; intros; assumption.
@@ -2030,19 +2031,19 @@ Proof.
assumption.
apply StepFun_P46 with b.
assert (H3 := pre phi1); unfold IsStepFun in H3; unfold is_subdivision in H3;
- elim H3; clear H3; intros l1 [lf1 H3]; split with l1;
- split with lf1; unfold adapted_couple in H3; decompose [and] H3;
- clear H3; unfold adapted_couple in |- *; repeat split;
+ elim H3; clear H3; intros l1 [lf1 H3]; split with l1;
+ split with lf1; unfold adapted_couple in H3; decompose [and] H3;
+ clear H3; unfold adapted_couple in |- *; repeat split;
try assumption.
intros; assert (H9 := H8 i H3); unfold constant_D_eq, open_interval in |- *;
- unfold constant_D_eq, open_interval in H9; intros;
+ unfold constant_D_eq, open_interval in H9; intros;
rewrite <- (H9 x H7); unfold psi3 in |- *; assert (H10 : x <= b).
apply Rle_trans with (pos_Rl l1 (S i)).
elim H7; intros; left; assumption.
replace b with (Rmax a b).
rewrite <- H4; elim (RList_P6 l1); intros; apply H10; try assumption.
apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H12 in H6;
- discriminate.
+ discriminate.
unfold Rmax in |- *; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
assert (H11 : a <= x).
@@ -2051,28 +2052,28 @@ Proof.
rewrite <- H5; elim (RList_P6 l1); intros; apply H11; try assumption.
apply le_O_n.
apply lt_trans with (pred (Rlength l1)); try assumption; apply lt_pred_n_n;
- apply neq_O_lt; red in |- *; intro; rewrite <- H13 in H6;
- discriminate.
+ apply neq_O_lt; red in |- *; intro; rewrite <- H13 in H6;
+ discriminate.
unfold Rmin in |- *; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
left; elim H7; intros; assumption.
unfold phi3 in |- *; case (Rle_dec a x); case (Rle_dec x b); intros;
reflexivity || elim n; assumption.
assert (H3 := pre phi2); unfold IsStepFun in H3; unfold is_subdivision in H3;
- elim H3; clear H3; intros l1 [lf1 H3]; split with l1;
- split with lf1; unfold adapted_couple in H3; decompose [and] H3;
- clear H3; unfold adapted_couple in |- *; repeat split;
+ elim H3; clear H3; intros l1 [lf1 H3]; split with l1;
+ split with lf1; unfold adapted_couple in H3; decompose [and] H3;
+ clear H3; unfold adapted_couple in |- *; repeat split;
try assumption.
intros; assert (H9 := H8 i H3); unfold constant_D_eq, open_interval in |- *;
- unfold constant_D_eq, open_interval in H9; intros;
+ unfold constant_D_eq, open_interval in H9; intros;
rewrite <- (H9 x H7); unfold psi3 in |- *; assert (H10 : b < x).
apply Rle_lt_trans with (pos_Rl l1 i).
replace b with (Rmin b c).
rewrite <- H5; elim (RList_P6 l1); intros; apply H10; try assumption.
apply le_O_n.
apply lt_trans with (pred (Rlength l1)); try assumption; apply lt_pred_n_n;
- apply neq_O_lt; red in |- *; intro; rewrite <- H12 in H6;
- discriminate.
+ apply neq_O_lt; red in |- *; intro; rewrite <- H12 in H6;
+ discriminate.
unfold Rmin in |- *; case (Rle_dec b c); intro;
[ reflexivity | elim n; assumption ].
elim H7; intros; assumption.
@@ -2088,7 +2089,7 @@ Lemma RiemannInt_P22 :
Riemann_integrable f a b -> a <= c <= b -> Riemann_integrable f a c.
Proof.
unfold Riemann_integrable in |- *; intros; elim (X eps); clear X;
- intros phi [psi H0]; elim H; elim H0; clear H H0;
+ intros phi [psi H0]; elim H; elim H0; clear H H0;
intros; assert (H3 : IsStepFun phi a c).
apply StepFun_P44 with b.
apply (pre phi).
@@ -2178,7 +2179,7 @@ Lemma RiemannInt_P23 :
Riemann_integrable f a b -> a <= c <= b -> Riemann_integrable f c b.
Proof.
unfold Riemann_integrable in |- *; intros; elim (X eps); clear X;
- intros phi [psi H0]; elim H; elim H0; clear H H0;
+ intros phi [psi H0]; elim H; elim H0; clear H H0;
intros; assert (H3 : IsStepFun phi c b).
apply StepFun_P45 with a.
apply (pre phi).
@@ -2294,7 +2295,7 @@ Proof.
intros f a b c pr1 pr2 pr3 Hyp1 Hyp2; unfold RiemannInt in |- *;
case (RiemannInt_exists pr1 RinvN RinvN_cv);
case (RiemannInt_exists pr2 RinvN RinvN_cv);
- case (RiemannInt_exists pr3 RinvN RinvN_cv); intros;
+ case (RiemannInt_exists pr3 RinvN RinvN_cv); intros;
symmetry in |- *; eapply UL_sequence.
apply u.
unfold Un_cv in |- *; intros; assert (H0 : 0 < eps / 3).
@@ -2309,7 +2310,7 @@ Proof.
(RiemannInt_SF (phi_sequence RinvN pr1 n) +
RiemannInt_SF (phi_sequence RinvN pr2 n))) 0).
intro; elim (H3 _ H0); clear H3; intros N3 H3;
- set (N0 := max (max N1 N2) N3); exists N0; intros;
+ set (N0 := max (max N1 N2) N3); exists N0; intros;
unfold R_dist in |- *;
apply Rle_lt_trans with
(Rabs
@@ -2368,7 +2369,7 @@ Proof.
Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\
Rabs (RiemannInt_SF (psi1 n)) < RinvN n)).
split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr1 n)); intro;
- apply (proj2_sig (phi_sequence_prop RinvN pr1 n)).
+ apply (proj2_sig (phi_sequence_prop RinvN pr1 n)).
assert
(H2 :
exists psi2 : nat -> StepFun b c,
@@ -2378,7 +2379,7 @@ Proof.
Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\
Rabs (RiemannInt_SF (psi2 n)) < RinvN n)).
split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr2 n)); intro;
- apply (proj2_sig (phi_sequence_prop RinvN pr2 n)).
+ apply (proj2_sig (phi_sequence_prop RinvN pr2 n)).
assert
(H3 :
exists psi3 : nat -> StepFun a c,
@@ -2388,9 +2389,9 @@ Proof.
Rabs (f t - phi_sequence RinvN pr3 n t) <= psi3 n t) /\
Rabs (RiemannInt_SF (psi3 n)) < RinvN n)).
split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr3 n)); intro;
- apply (proj2_sig (phi_sequence_prop RinvN pr3 n)).
+ apply (proj2_sig (phi_sequence_prop RinvN pr3 n)).
elim H1; clear H1; intros psi1 H1; elim H2; clear H2; intros psi2 H2; elim H3;
- clear H3; intros psi3 H3; assert (H := RinvN_cv);
+ clear H3; intros psi3 H3; assert (H := RinvN_cv);
unfold Un_cv in |- *; intros; assert (H4 : 0 < eps / 3).
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
@@ -2401,14 +2402,14 @@ Proof.
(R_dist (mkposreal (/ (INR n + 1)) (RinvN_pos n)) 0).
apply H; assumption.
unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0;
- rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge;
+ rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge;
left; apply (cond_pos (RinvN n)).
exists N0; intros; elim (H1 n); elim (H2 n); elim (H3 n); clear H1 H2 H3;
- intros; unfold R_dist in |- *; unfold Rminus in |- *;
- rewrite Ropp_0; rewrite Rplus_0_r;
+ intros; unfold R_dist in |- *; unfold Rminus in |- *;
+ rewrite Ropp_0; rewrite Rplus_0_r;
set (phi1 := phi_sequence RinvN pr1 n) in H8 |- *;
- set (phi2 := phi_sequence RinvN pr2 n) in H3 |- *;
- set (phi3 := phi_sequence RinvN pr3 n) in H1 |- *;
+ set (phi2 := phi_sequence RinvN pr2 n) in H3 |- *;
+ set (phi3 := phi_sequence RinvN pr3 n) in H1 |- *;
assert (H10 : IsStepFun phi3 a b).
apply StepFun_P44 with c.
apply (pre phi3).
@@ -2832,7 +2833,7 @@ Proof.
(derivable_pt_lim
((fct_cte (f b) * (id - fct_cte b))%F +
fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b (
- f b + 0)) in |- *.
+ f b + 0)) in |- *.
apply derivable_pt_lim_plus.
pattern (f b) at 2 in |- *;
replace (f b) with (0 * (id - fct_cte b)%F b + fct_cte (f b) b * 1).
@@ -2899,7 +2900,7 @@ Proof.
apply
(RiemannInt_P17 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b)))
(RiemannInt_P16
- (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b)))));
+ (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b)))));
left; assumption.
apply Rle_lt_trans with
(RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2)) * Rabs (/ h0)).
@@ -2953,13 +2954,13 @@ Proof.
rewrite RiemannInt_P15.
rewrite <- Ropp_mult_distr_l_reverse; apply Rmult_eq_reg_l with h0;
[ repeat rewrite (Rmult_comm h0); unfold Rdiv in |- *;
- repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym;
+ repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym;
[ ring | assumption ]
| assumption ].
cut (a <= b + h0).
cut (b + h0 <= b).
intros; unfold primitive in |- *; case (Rle_dec a (b + h0));
- case (Rle_dec (b + h0) b); case (Rle_dec a b); case (Rle_dec b b);
+ case (Rle_dec (b + h0) b); case (Rle_dec a b); case (Rle_dec b b);
intros; try (elim n; right; reflexivity) || (elim n; left; assumption).
rewrite <- (RiemannInt_P26 (FTC_P1 h C0 r3 r2) H13 (FTC_P1 h C0 r1 r0)); ring.
elim n; assumption.
@@ -3083,7 +3084,7 @@ Proof.
apply
(RiemannInt_P17 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a)))
(RiemannInt_P16
- (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a)))));
+ (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a)))));
left; assumption.
apply Rle_lt_trans with
(RiemannInt (RiemannInt_P14 a (a + h0) (eps / 2)) * Rabs (/ h0)).
@@ -3138,7 +3139,7 @@ Proof.
cut (a <= a + h0).
cut (a + h0 <= b).
intros; unfold primitive in |- *; case (Rle_dec a (a + h0));
- case (Rle_dec (a + h0) b); case (Rle_dec a a); case (Rle_dec a b);
+ case (Rle_dec (a + h0) b); case (Rle_dec a a); case (Rle_dec a b);
intros; try (elim n; right; reflexivity) || (elim n; left; assumption).
rewrite RiemannInt_P9; unfold Rminus in |- *; rewrite Ropp_0;
rewrite Rplus_0_r; apply RiemannInt_P5.
@@ -3174,7 +3175,7 @@ Proof.
(derivable_pt_lim
((fct_cte (f b) * (id - fct_cte b))%F +
fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b (
- f b + 0)) in |- *.
+ f b + 0)) in |- *.
apply derivable_pt_lim_plus.
pattern (f b) at 2 in |- *;
replace (f b) with (0 * (id - fct_cte b)%F b + fct_cte (f b) b * 1).
@@ -3198,7 +3199,7 @@ Proof.
pattern a at 2 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
assumption.
rewrite H1; unfold primitive in |- *; case (Rle_dec a (a + h0));
- case (Rle_dec (a + h0) b); case (Rle_dec a a); case (Rle_dec a b);
+ case (Rle_dec (a + h0) b); case (Rle_dec a a); case (Rle_dec a b);
intros; try (elim n; right; assumption || reflexivity).
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r3 H10)).
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r2 H10)).
@@ -3216,7 +3217,7 @@ Proof.
assumption.
elim H8; symmetry in |- *; assumption.
rewrite H0 in H1; rewrite H1; unfold primitive in |- *;
- case (Rle_dec a (b + h0)); case (Rle_dec (b + h0) b);
+ case (Rle_dec a (b + h0)); case (Rle_dec (b + h0) b);
case (Rle_dec a b); case (Rle_dec b b); intros;
try (elim n; right; assumption || reflexivity).
rewrite H0 in H10; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r2 H10)).
@@ -3286,7 +3287,7 @@ Proof.
intros; apply (cont1 f).
rewrite (RiemannInt_P20 H (FTC_P1 H H0) pr);
assert (H1 := RiemannInt_P29 H H0); assert (H2 := RiemannInt_P31 f H);
- elim (antiderivative_Ucte (derive f (diff0 f)) _ _ _ _ H1 H2);
+ elim (antiderivative_Ucte (derive f (diff0 f)) _ _ _ _ H1 H2);
intros C H3; repeat rewrite H3;
[ ring
| split; [ right; reflexivity | assumption ]