diff options
author | Stephane Glondu <steph@glondu.net> | 2012-01-12 16:02:20 +0100 |
---|---|---|
committer | Stephane Glondu <steph@glondu.net> | 2012-01-12 16:02:20 +0100 |
commit | 97fefe1fcca363a1317e066e7f4b99b9c1e9987b (patch) | |
tree | 97ec6b7d831cc5fb66328b0c63a11db1cbb2f158 /theories/Reals/Rfunctions.v | |
parent | 300293c119981054c95182a90c829058530a6b6f (diff) |
Imported Upstream version 8.4~betaupstream/8.4_beta
Diffstat (limited to 'theories/Reals/Rfunctions.v')
-rw-r--r-- | theories/Reals/Rfunctions.v | 257 |
1 files changed, 121 insertions, 136 deletions
diff --git a/theories/Reals/Rfunctions.v b/theories/Reals/Rfunctions.v index a91cf8ae..c0cd7864 100644 --- a/theories/Reals/Rfunctions.v +++ b/theories/Reals/Rfunctions.v @@ -1,13 +1,11 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Rfunctions.v 14641 2011-11-06 11:59:10Z herbelin $ i*) - (*i Some properties about pow and sum have been made with John Harrison i*) (*i Some Lemmas (about pow and powerRZ) have been done by Laurent Thery i*) @@ -36,7 +34,7 @@ Open Local Scope R_scope. (*********) Lemma INR_fact_neq_0 : forall n:nat, INR (fact n) <> 0. Proof. - intro; red in |- *; intro; apply (not_O_INR (fact n) (fact_neq_0 n)); + intro; red; intro; apply (not_O_INR (fact n) (fact_neq_0 n)); assumption. Qed. @@ -51,7 +49,7 @@ Lemma simpl_fact : forall n:nat, / INR (fact (S n)) * / / INR (fact n) = / INR (S n). Proof. intro; rewrite (Rinv_involutive (INR (fact n)) (INR_fact_neq_0 n)); - unfold fact at 1 in |- *; cbv beta iota in |- *; fold fact in |- *; + unfold fact at 1; cbv beta iota; fold fact; rewrite (mult_INR (S n) (fact n)); rewrite (Rinv_mult_distr (INR (S n)) (INR (fact n))). rewrite (Rmult_assoc (/ INR (S n)) (/ INR (fact n)) (INR (fact n))); @@ -75,20 +73,20 @@ Qed. Lemma pow_1 : forall x:R, x ^ 1 = x. Proof. - simpl in |- *; auto with real. + simpl; auto with real. Qed. Lemma pow_add : forall (x:R) (n m:nat), x ^ (n + m) = x ^ n * x ^ m. Proof. - intros x n; elim n; simpl in |- *; auto with real. + intros x n; elim n; simpl; auto with real. intros n0 H' m; rewrite H'; auto with real. Qed. Lemma pow_nonzero : forall (x:R) (n:nat), x <> 0 -> x ^ n <> 0. Proof. - intro; simple induction n; simpl in |- *. - intro; red in |- *; intro; apply R1_neq_R0; assumption. - intros; red in |- *; intro; elim (Rmult_integral x (x ^ n0) H1). + intro; simple induction n; simpl. + intro; red; intro; apply R1_neq_R0; assumption. + intros; red; intro; elim (Rmult_integral x (x ^ n0) H1). intro; auto. apply H; assumption. Qed. @@ -98,24 +96,24 @@ Hint Resolve pow_O pow_1 pow_add pow_nonzero: real. Lemma pow_RN_plus : forall (x:R) (n m:nat), x <> 0 -> x ^ n = x ^ (n + m) * / x ^ m. Proof. - intros x n; elim n; simpl in |- *; auto with real. + intros x n; elim n; simpl; auto with real. intros n0 H' m H'0. rewrite Rmult_assoc; rewrite <- H'; auto. Qed. Lemma pow_lt : forall (x:R) (n:nat), 0 < x -> 0 < x ^ n. Proof. - intros x n; elim n; simpl in |- *; auto with real. + intros x n; elim n; simpl; auto with real. intros n0 H' H'0; replace 0 with (x * 0); auto with real. Qed. Hint Resolve pow_lt: real. Lemma Rlt_pow_R1 : forall (x:R) (n:nat), 1 < x -> (0 < n)%nat -> 1 < x ^ n. Proof. - intros x n; elim n; simpl in |- *; auto with real. + intros x n; elim n; simpl; auto with real. intros H' H'0; exfalso; omega. intros n0; case n0. - simpl in |- *; rewrite Rmult_1_r; auto. + simpl; rewrite Rmult_1_r; auto. intros n1 H' H'0 H'1. replace 1 with (1 * 1); auto with real. apply Rlt_trans with (r2 := x * 1); auto with real. @@ -129,7 +127,7 @@ Lemma Rlt_pow : forall (x:R) (n m:nat), 1 < x -> (n < m)%nat -> x ^ n < x ^ m. Proof. intros x n m H' H'0; replace m with (m - n + n)%nat. rewrite pow_add. - pattern (x ^ n) at 1 in |- *; replace (x ^ n) with (1 * x ^ n); + pattern (x ^ n) at 1; replace (x ^ n) with (1 * x ^ n); auto with real. apply Rminus_lt. repeat rewrite (fun y:R => Rmult_comm y (x ^ n)); @@ -149,14 +147,14 @@ Hint Resolve Rlt_pow: real. (*********) Lemma tech_pow_Rmult : forall (x:R) (n:nat), x * x ^ n = x ^ S n. Proof. - simple induction n; simpl in |- *; trivial. + simple induction n; simpl; trivial. Qed. (*********) Lemma tech_pow_Rplus : forall (x:R) (a n:nat), x ^ a + INR n * x ^ a = INR (S n) * x ^ a. Proof. - intros; pattern (x ^ a) at 1 in |- *; + intros; pattern (x ^ a) at 1; rewrite <- (let (H1, H2) := Rmult_ne (x ^ a) in H1); rewrite (Rmult_comm (INR n) (x ^ a)); rewrite <- (Rmult_plus_distr_l (x ^ a) 1 (INR n)); @@ -167,29 +165,29 @@ Qed. Lemma poly : forall (n:nat) (x:R), 0 < x -> 1 + INR n * x <= (1 + x) ^ n. Proof. intros; elim n. - simpl in |- *; cut (1 + 0 * x = 1). - intro; rewrite H0; unfold Rle in |- *; right; reflexivity. + simpl; cut (1 + 0 * x = 1). + intro; rewrite H0; unfold Rle; right; reflexivity. ring. - intros; unfold pow in |- *; fold pow in |- *; + intros; unfold pow; fold pow; apply (Rle_trans (1 + INR (S n0) * x) ((1 + x) * (1 + INR n0 * x)) ((1 + x) * (1 + x) ^ n0)). cut ((1 + x) * (1 + INR n0 * x) = 1 + INR (S n0) * x + INR n0 * (x * x)). - intro; rewrite H1; pattern (1 + INR (S n0) * x) at 1 in |- *; + intro; rewrite H1; pattern (1 + INR (S n0) * x) at 1; rewrite <- (let (H1, H2) := Rplus_ne (1 + INR (S n0) * x) in H1); apply Rplus_le_compat_l; elim n0; intros. - simpl in |- *; rewrite Rmult_0_l; unfold Rle in |- *; right; auto. - unfold Rle in |- *; left; generalize Rmult_gt_0_compat; unfold Rgt in |- *; - intro; fold (Rsqr x) in |- *; + simpl; rewrite Rmult_0_l; unfold Rle; right; auto. + unfold Rle; left; generalize Rmult_gt_0_compat; unfold Rgt; + intro; fold (Rsqr x); apply (H3 (INR (S n1)) (Rsqr x) (lt_INR_0 (S n1) (lt_O_Sn n1))); fold (x > 0) in H; apply (Rlt_0_sqr x (Rlt_dichotomy_converse x 0 (or_intror (x < 0) H))). rewrite (S_INR n0); ring. unfold Rle in H0; elim H0; intro. - unfold Rle in |- *; left; apply Rmult_lt_compat_l. + unfold Rle; left; apply Rmult_lt_compat_l. rewrite Rplus_comm; apply (Rle_lt_0_plus_1 x (Rlt_le 0 x H)). assumption. - rewrite H1; unfold Rle in |- *; right; trivial. + rewrite H1; unfold Rle; right; trivial. Qed. Lemma Power_monotonic : @@ -197,12 +195,12 @@ Lemma Power_monotonic : Rabs x > 1 -> (m <= n)%nat -> Rabs (x ^ m) <= Rabs (x ^ n). Proof. intros x m n H; induction n as [| n Hrecn]; intros; inversion H0. - unfold Rle in |- *; right; reflexivity. - unfold Rle in |- *; right; reflexivity. + unfold Rle; right; reflexivity. + unfold Rle; right; reflexivity. apply (Rle_trans (Rabs (x ^ m)) (Rabs (x ^ n)) (Rabs (x ^ S n))). apply Hrecn; assumption. - simpl in |- *; rewrite Rabs_mult. - pattern (Rabs (x ^ n)) at 1 in |- *. + simpl; rewrite Rabs_mult. + pattern (Rabs (x ^ n)) at 1. rewrite <- Rmult_1_r. rewrite (Rmult_comm (Rabs x) (Rabs (x ^ n))). apply Rmult_le_compat_l. @@ -213,7 +211,7 @@ Qed. Lemma RPow_abs : forall (x:R) (n:nat), Rabs x ^ n = Rabs (x ^ n). Proof. - intro; simple induction n; simpl in |- *. + intro; simple induction n; simpl. apply sym_eq; apply Rabs_pos_eq; apply Rlt_le; apply Rlt_0_1. intros; rewrite H; apply sym_eq; apply Rabs_mult. Qed. @@ -233,16 +231,16 @@ Proof. rewrite <- RPow_abs; cut (Rabs x = 1 + (Rabs x - 1)). intro; rewrite H3; apply (Rge_trans ((1 + (Rabs x - 1)) ^ x0) (1 + INR x0 * (Rabs x - 1)) b). - apply Rle_ge; apply poly; fold (Rabs x - 1 > 0) in |- *; apply Rgt_minus; + apply Rle_ge; apply poly; fold (Rabs x - 1 > 0); apply Rgt_minus; assumption. apply (Rge_trans (1 + INR x0 * (Rabs x - 1)) (INR x0 * (Rabs x - 1)) b). apply Rle_ge; apply Rlt_le; rewrite (Rplus_comm 1 (INR x0 * (Rabs x - 1))); - pattern (INR x0 * (Rabs x - 1)) at 1 in |- *; + pattern (INR x0 * (Rabs x - 1)) at 1; rewrite <- (let (H1, H2) := Rplus_ne (INR x0 * (Rabs x - 1)) in H1); apply Rplus_lt_compat_l; apply Rlt_0_1. cut (b = b * / (Rabs x - 1) * (Rabs x - 1)). intros; rewrite H4; apply Rmult_ge_compat_r. - apply Rge_minus; unfold Rge in |- *; left; assumption. + apply Rge_minus; unfold Rge; left; assumption. assumption. rewrite Rmult_assoc; rewrite Rinv_l. ring. @@ -254,26 +252,26 @@ Proof. apply (Rge_trans (INR x0) (IZR (up (b * / (Rabs x - 1)))) (b * / (Rabs x - 1))). rewrite INR_IZR_INZ; apply IZR_ge; omega. - unfold Rge in |- *; left; assumption. + unfold Rge; left; assumption. exists 0%nat; apply (Rge_trans (INR 0) (IZR (up (b * / (Rabs x - 1)))) (b * / (Rabs x - 1))). - rewrite INR_IZR_INZ; apply IZR_ge; simpl in |- *; omega. - unfold Rge in |- *; left; assumption. + rewrite INR_IZR_INZ; apply IZR_ge; simpl; omega. + unfold Rge; left; assumption. omega. Qed. Lemma pow_ne_zero : forall n:nat, n <> 0%nat -> 0 ^ n = 0. Proof. simple induction n. - simpl in |- *; auto. + simpl; auto. intros; elim H; reflexivity. - intros; simpl in |- *; apply Rmult_0_l. + intros; simpl; apply Rmult_0_l. Qed. Lemma Rinv_pow : forall (x:R) (n:nat), x <> 0 -> / x ^ n = (/ x) ^ n. Proof. - intros; elim n; simpl in |- *. + intros; elim n; simpl. apply Rinv_1. intro m; intro; rewrite Rinv_mult_distr. rewrite H0; reflexivity; assumption. @@ -307,7 +305,7 @@ Proof. rewrite <- Rabs_Rinv. rewrite Rinv_pow. apply (Rlt_le_trans (/ y) (/ y + 1) (Rabs ((/ x) ^ n))). - pattern (/ y) at 1 in |- *. + pattern (/ y) at 1. rewrite <- (let (H1, H2) := Rplus_ne (/ y) in H1). apply Rplus_lt_compat_l. apply Rlt_0_1. @@ -321,17 +319,17 @@ Proof. apply pow_nonzero. assumption. apply Rlt_dichotomy_converse. - right; unfold Rgt in |- *; assumption. + right; unfold Rgt; assumption. rewrite <- (Rinv_involutive 1). rewrite Rabs_Rinv. - unfold Rgt in |- *; apply Rinv_lt_contravar. + unfold Rgt; apply Rinv_lt_contravar. apply Rmult_lt_0_compat. apply Rabs_pos_lt. assumption. rewrite Rinv_1; apply Rlt_0_1. rewrite Rinv_1; assumption. assumption. - red in |- *; intro; apply R1_neq_R0; assumption. + red; intro; apply R1_neq_R0; assumption. Qed. Lemma pow_R1 : forall (r:R) (n:nat), r ^ n = 1 -> Rabs r = 1 \/ n = 0%nat. @@ -345,7 +343,7 @@ Proof. cut (Rabs r <> 0); [ intros Eq2 | apply Rabs_no_R0 ]; auto. absurd (Rabs (/ r) ^ 0 < Rabs (/ r) ^ S n0); auto. replace (Rabs (/ r) ^ S n0) with 1. - simpl in |- *; apply Rlt_irrefl; auto. + simpl; apply Rlt_irrefl; auto. rewrite Rabs_Rinv; auto. rewrite <- Rinv_pow; auto. rewrite RPow_abs; auto. @@ -356,16 +354,16 @@ Proof. case (Rabs_pos r); auto. intros H'3; case Eq2; auto. rewrite Rmult_1_r; rewrite Rinv_r; auto with real. - red in |- *; intro; absurd (r ^ S n0 = 1); auto. - simpl in |- *; rewrite H; rewrite Rmult_0_l; auto with real. + red; intro; absurd (r ^ S n0 = 1); auto. + simpl; rewrite H; rewrite Rmult_0_l; auto with real. generalize H'; case n; auto. intros n0 H'0. cut (r <> 0); [ intros Eq1 | auto with real ]. cut (Rabs r <> 0); [ intros Eq2 | apply Rabs_no_R0 ]; auto. absurd (Rabs r ^ 0 < Rabs r ^ S n0); auto with real arith. - repeat rewrite RPow_abs; rewrite H'0; simpl in |- *; auto with real. - red in |- *; intro; absurd (r ^ S n0 = 1); auto. - simpl in |- *; rewrite H; rewrite Rmult_0_l; auto with real. + repeat rewrite RPow_abs; rewrite H'0; simpl; auto with real. + red; intro; absurd (r ^ S n0 = 1); auto. + simpl; rewrite H; rewrite Rmult_0_l; auto with real. Qed. Lemma pow_Rsqr : forall (x:R) (n:nat), x ^ (2 * n) = Rsqr x ^ n. @@ -375,15 +373,15 @@ Proof. replace (2 * S n)%nat with (S (S (2 * n))). replace (x ^ S (S (2 * n))) with (x * x * x ^ (2 * n)). rewrite Hrecn; reflexivity. - simpl in |- *; ring. + simpl; ring. ring. Qed. Lemma pow_le : forall (a:R) (n:nat), 0 <= a -> 0 <= a ^ n. Proof. intros; induction n as [| n Hrecn]. - simpl in |- *; left; apply Rlt_0_1. - simpl in |- *; apply Rmult_le_pos; assumption. + simpl; left; apply Rlt_0_1. + simpl; apply Rmult_le_pos; assumption. Qed. (**********) @@ -392,36 +390,36 @@ Proof. intro; induction n as [| n Hrecn]. reflexivity. replace (2 * S n)%nat with (2 + 2 * n)%nat by ring. - rewrite pow_add; rewrite Hrecn; simpl in |- *; ring. + rewrite pow_add; rewrite Hrecn; simpl; ring. Qed. (**********) Lemma pow_1_odd : forall n:nat, (-1) ^ S (2 * n) = -1. Proof. intro; replace (S (2 * n)) with (2 * n + 1)%nat by ring. - rewrite pow_add; rewrite pow_1_even; simpl in |- *; ring. + rewrite pow_add; rewrite pow_1_even; simpl; ring. Qed. (**********) Lemma pow_1_abs : forall n:nat, Rabs ((-1) ^ n) = 1. Proof. intro; induction n as [| n Hrecn]. - simpl in |- *; apply Rabs_R1. + simpl; apply Rabs_R1. replace (S n) with (n + 1)%nat; [ rewrite pow_add | ring ]. rewrite Rabs_mult. - rewrite Hrecn; rewrite Rmult_1_l; simpl in |- *; rewrite Rmult_1_r; + rewrite Hrecn; rewrite Rmult_1_l; simpl; rewrite Rmult_1_r; rewrite Rabs_Ropp; apply Rabs_R1. Qed. Lemma pow_mult : forall (x:R) (n1 n2:nat), x ^ (n1 * n2) = (x ^ n1) ^ n2. Proof. intros; induction n2 as [| n2 Hrecn2]. - simpl in |- *; replace (n1 * 0)%nat with 0%nat; [ reflexivity | ring ]. + simpl; replace (n1 * 0)%nat with 0%nat; [ reflexivity | ring ]. replace (n1 * S n2)%nat with (n1 * n2 + n1)%nat. replace (S n2) with (n2 + 1)%nat by ring. do 2 rewrite pow_add. rewrite Hrecn2. - simpl in |- *. + simpl. ring. ring. Qed. @@ -431,7 +429,7 @@ Proof. intros. induction n as [| n Hrecn]. right; reflexivity. - simpl in |- *. + simpl. elim H; intros. apply Rle_trans with (y * x ^ n). do 2 rewrite <- (Rmult_comm (x ^ n)). @@ -448,7 +446,7 @@ Proof. intros. induction k as [| k Hreck]. right; reflexivity. - simpl in |- *. + simpl. apply Rle_trans with (x * 1). rewrite Rmult_1_r; assumption. apply Rmult_le_compat_l. @@ -463,33 +461,33 @@ Proof. replace n with (n - m + m)%nat. rewrite pow_add. rewrite Rmult_comm. - pattern (x ^ m) at 1 in |- *; rewrite <- Rmult_1_r. + pattern (x ^ m) at 1; rewrite <- Rmult_1_r. apply Rmult_le_compat_l. apply pow_le; left; apply Rlt_le_trans with 1; [ apply Rlt_0_1 | assumption ]. apply pow_R1_Rle; assumption. rewrite plus_comm. - symmetry in |- *; apply le_plus_minus; assumption. + symmetry ; apply le_plus_minus; assumption. Qed. Lemma pow1 : forall n:nat, 1 ^ n = 1. Proof. intro; induction n as [| n Hrecn]. reflexivity. - simpl in |- *; rewrite Hrecn; rewrite Rmult_1_r; reflexivity. + simpl; rewrite Hrecn; rewrite Rmult_1_r; reflexivity. Qed. Lemma pow_Rabs : forall (x:R) (n:nat), x ^ n <= Rabs x ^ n. Proof. intros; induction n as [| n Hrecn]. right; reflexivity. - simpl in |- *; case (Rcase_abs x); intro. + simpl; case (Rcase_abs x); intro. apply Rle_trans with (Rabs (x * x ^ n)). apply RRle_abs. rewrite Rabs_mult. apply Rmult_le_compat_l. apply Rabs_pos. - right; symmetry in |- *; apply RPow_abs. - pattern (Rabs x) at 1 in |- *; rewrite (Rabs_right x r); + right; symmetry ; apply RPow_abs. + pattern (Rabs x) at 1; rewrite (Rabs_right x r); apply Rmult_le_compat_l. apply Rge_le; exact r. apply Hrecn. @@ -502,7 +500,7 @@ Proof. apply pow_Rabs. induction n as [| n Hrecn]. right; reflexivity. - simpl in |- *; apply Rle_trans with (x * Rabs y ^ n). + simpl; apply Rle_trans with (x * Rabs y ^ n). do 2 rewrite <- (Rmult_comm (Rabs y ^ n)). apply Rmult_le_compat_l. apply pow_le; apply Rabs_pos. @@ -519,7 +517,7 @@ Qed. (*i Due to L.Thery i*) Ltac case_eq name := - generalize (refl_equal name); pattern name at -1 in |- *; case name. + generalize (refl_equal name); pattern name at -1; case name. Definition powerRZ (x:R) (n:Z) := match n with @@ -533,7 +531,7 @@ Infix Local "^Z" := powerRZ (at level 30, right associativity) : R_scope. Lemma Zpower_NR0 : forall (x:Z) (n:nat), (0 <= x)%Z -> (0 <= Zpower_nat x n)%Z. Proof. - induction n; unfold Zpower_nat in |- *; simpl in |- *; auto with zarith. + induction n; unfold Zpower_nat; simpl; auto with zarith. Qed. Lemma powerRZ_O : forall x:R, x ^Z 0 = 1. @@ -543,60 +541,47 @@ Qed. Lemma powerRZ_1 : forall x:R, x ^Z Zsucc 0 = x. Proof. - simpl in |- *; auto with real. + simpl; auto with real. Qed. Lemma powerRZ_NOR : forall (x:R) (z:Z), x <> 0 -> x ^Z z <> 0. Proof. - destruct z; simpl in |- *; auto with real. + destruct z; simpl; auto with real. Qed. Lemma powerRZ_add : forall (x:R) (n m:Z), x <> 0 -> x ^Z (n + m) = x ^Z n * x ^Z m. Proof. - intro x; destruct n as [| n1| n1]; destruct m as [| m1| m1]; simpl in |- *; + intro x; destruct n as [| n1| n1]; destruct m as [| m1| m1]; simpl; auto with real. (* POS/POS *) - rewrite nat_of_P_plus_morphism; auto with real. + rewrite Pplus_plus; auto with real. (* POS/NEG *) - case_eq ((n1 ?= m1)%positive Datatypes.Eq); simpl in |- *; auto with real. - intros H' H'0; rewrite Pcompare_Eq_eq with (1 := H'); auto with real. - intros H' H'0; rewrite (nat_of_P_minus_morphism m1 n1); auto with real. - rewrite (pow_RN_plus x (nat_of_P m1 - nat_of_P n1) (nat_of_P n1)); - auto with real. - rewrite plus_comm; rewrite le_plus_minus_r; auto with real. - rewrite Rinv_mult_distr; auto with real. - rewrite Rinv_involutive; auto with real. - apply lt_le_weak. - apply nat_of_P_lt_Lt_compare_morphism; auto. - apply ZC2; auto. - intros H' H'0; rewrite (nat_of_P_minus_morphism n1 m1); auto with real. - rewrite (pow_RN_plus x (nat_of_P n1 - nat_of_P m1) (nat_of_P m1)); - auto with real. - rewrite plus_comm; rewrite le_plus_minus_r; auto with real. - apply lt_le_weak. - change (nat_of_P n1 > nat_of_P m1)%nat in |- *. - apply nat_of_P_gt_Gt_compare_morphism; auto. + rewrite Z.pos_sub_spec. + case Pcompare_spec; intros; simpl. + subst; auto with real. + rewrite Pminus_minus by trivial. + rewrite (pow_RN_plus x _ (nat_of_P n1)) by auto with real. + rewrite plus_comm, le_plus_minus_r by (now apply lt_le_weak, Plt_lt). + rewrite Rinv_mult_distr, Rinv_involutive; auto with real. + rewrite Pminus_minus by trivial. + rewrite (pow_RN_plus x _ (nat_of_P m1)) by auto with real. + rewrite plus_comm, le_plus_minus_r by (now apply lt_le_weak, Plt_lt). + reflexivity. (* NEG/POS *) - case_eq ((n1 ?= m1)%positive Datatypes.Eq); simpl in |- *; auto with real. - intros H' H'0; rewrite Pcompare_Eq_eq with (1 := H'); auto with real. - intros H' H'0; rewrite (nat_of_P_minus_morphism m1 n1); auto with real. - rewrite (pow_RN_plus x (nat_of_P m1 - nat_of_P n1) (nat_of_P n1)); - auto with real. - rewrite plus_comm; rewrite le_plus_minus_r; auto with real. - apply lt_le_weak. - apply nat_of_P_lt_Lt_compare_morphism; auto. - apply ZC2; auto. - intros H' H'0; rewrite (nat_of_P_minus_morphism n1 m1); auto with real. - rewrite (pow_RN_plus x (nat_of_P n1 - nat_of_P m1) (nat_of_P m1)); - auto with real. - rewrite plus_comm; rewrite le_plus_minus_r; auto with real. - rewrite Rinv_mult_distr; auto with real. - apply lt_le_weak. - change (nat_of_P n1 > nat_of_P m1)%nat in |- *. - apply nat_of_P_gt_Gt_compare_morphism; auto. + rewrite Z.pos_sub_spec. + case Pcompare_spec; intros; simpl. + subst; auto with real. + rewrite Pminus_minus by trivial. + rewrite (pow_RN_plus x _ (nat_of_P m1)) by auto with real. + rewrite plus_comm, le_plus_minus_r by (now apply lt_le_weak, Plt_lt). + rewrite Rinv_mult_distr, Rinv_involutive; auto with real. + rewrite Pminus_minus by trivial. + rewrite (pow_RN_plus x _ (nat_of_P n1)) by auto with real. + rewrite plus_comm, le_plus_minus_r by (now apply lt_le_weak, Plt_lt). + auto with real. (* NEG/NEG *) - rewrite nat_of_P_plus_morphism; auto with real. + rewrite Pplus_plus; auto with real. intros H'; rewrite pow_add; auto with real. apply Rinv_mult_distr; auto. apply pow_nonzero; auto. @@ -607,16 +592,16 @@ Hint Resolve powerRZ_O powerRZ_1 powerRZ_NOR powerRZ_add: real. Lemma Zpower_nat_powerRZ : forall n m:nat, IZR (Zpower_nat (Z_of_nat n) m) = INR n ^Z Z_of_nat m. Proof. - intros n m; elim m; simpl in |- *; auto with real. - intros m1 H'; rewrite nat_of_P_o_P_of_succ_nat_eq_succ; simpl in |- *. + intros n m; elim m; simpl; auto with real. + intros m1 H'; rewrite nat_of_P_of_succ_nat; simpl. replace (Zpower_nat (Z_of_nat n) (S m1)) with (Z_of_nat n * Zpower_nat (Z_of_nat n) m1)%Z. rewrite mult_IZR; auto with real. - repeat rewrite <- INR_IZR_INZ; simpl in |- *. - rewrite H'; simpl in |- *. - case m1; simpl in |- *; auto with real. - intros m2; rewrite nat_of_P_o_P_of_succ_nat_eq_succ; auto. - unfold Zpower_nat in |- *; auto. + repeat rewrite <- INR_IZR_INZ; simpl. + rewrite H'; simpl. + case m1; simpl; auto with real. + intros m2; rewrite nat_of_P_of_succ_nat; auto. + unfold Zpower_nat; auto. Qed. Lemma Zpower_pos_powerRZ : @@ -633,7 +618,7 @@ Qed. Lemma powerRZ_lt : forall (x:R) (z:Z), 0 < x -> 0 < x ^Z z. Proof. - intros x z; case z; simpl in |- *; auto with real. + intros x z; case z; simpl; auto with real. Qed. Hint Resolve powerRZ_lt: real. @@ -646,19 +631,19 @@ Hint Resolve powerRZ_le: real. Lemma Zpower_nat_powerRZ_absolu : forall n m:Z, (0 <= m)%Z -> IZR (Zpower_nat n (Zabs_nat m)) = IZR n ^Z m. Proof. - intros n m; case m; simpl in |- *; auto with zarith. - intros p H'; elim (nat_of_P p); simpl in |- *; auto with zarith. - intros n0 H'0; rewrite <- H'0; simpl in |- *; auto with zarith. + intros n m; case m; simpl; auto with zarith. + intros p H'; elim (nat_of_P p); simpl; auto with zarith. + intros n0 H'0; rewrite <- H'0; simpl; auto with zarith. rewrite <- mult_IZR; auto. intros p H'; absurd (0 <= Zneg p)%Z; auto with zarith. Qed. Lemma powerRZ_R1 : forall n:Z, 1 ^Z n = 1. Proof. - intros n; case n; simpl in |- *; auto. - intros p; elim (nat_of_P p); simpl in |- *; auto; intros n0 H'; rewrite H'; + intros n; case n; simpl; auto. + intros p; elim (nat_of_P p); simpl; auto; intros n0 H'; rewrite H'; ring. - intros p; elim (nat_of_P p); simpl in |- *. + intros p; elim (nat_of_P p); simpl. exact Rinv_1. intros n1 H'; rewrite Rinv_mult_distr; try rewrite Rinv_1; try rewrite H'; auto with real. @@ -676,7 +661,7 @@ Definition decimal_exp (r:R) (z:Z) : R := (r * 10 ^Z z). (** * Sum of n first naturals *) (*******************************) (*********) -Boxed Fixpoint sum_nat_f_O (f:nat -> nat) (n:nat) : nat := +Fixpoint sum_nat_f_O (f:nat -> nat) (n:nat) : nat := match n with | O => f 0%nat | S n' => (sum_nat_f_O f n' + f (S n'))%nat @@ -710,10 +695,10 @@ Lemma GP_finite : forall (x:R) (n:nat), sum_f_R0 (fun n:nat => x ^ n) n * (x - 1) = x ^ (n + 1) - 1. Proof. - intros; induction n as [| n Hrecn]; simpl in |- *. + intros; induction n as [| n Hrecn]; simpl. ring. rewrite Rmult_plus_distr_r; rewrite Hrecn; cut ((n + 1)%nat = S n). - intro H; rewrite H; simpl in |- *; ring. + intro H; rewrite H; simpl; ring. omega. Qed. @@ -721,8 +706,8 @@ Lemma sum_f_R0_triangle : forall (x:nat -> R) (n:nat), Rabs (sum_f_R0 x n) <= sum_f_R0 (fun i:nat => Rabs (x i)) n. Proof. - intro; simple induction n; simpl in |- *. - unfold Rle in |- *; right; reflexivity. + intro; simple induction n; simpl. + unfold Rle; right; reflexivity. intro m; intro; apply (Rle_trans (Rabs (sum_f_R0 x m + x (S m))) @@ -744,16 +729,16 @@ Definition R_dist (x y:R) : R := Rabs (x - y). (*********) Lemma R_dist_pos : forall x y:R, R_dist x y >= 0. Proof. - intros; unfold R_dist in |- *; unfold Rabs in |- *; case (Rcase_abs (x - y)); + intros; unfold R_dist; unfold Rabs; case (Rcase_abs (x - y)); intro l. - unfold Rge in |- *; left; apply (Ropp_gt_lt_0_contravar (x - y) l). + unfold Rge; left; apply (Ropp_gt_lt_0_contravar (x - y) l). trivial. Qed. (*********) Lemma R_dist_sym : forall x y:R, R_dist x y = R_dist y x. Proof. - unfold R_dist in |- *; intros; split_Rabs; try ring. + unfold R_dist; intros; split_Rabs; try ring. generalize (Ropp_gt_lt_0_contravar (y - x) r); intro; rewrite (Ropp_minus_distr y x) in H; generalize (Rlt_asym (x - y) 0 r0); intro; unfold Rgt in H; exfalso; auto. @@ -765,7 +750,7 @@ Qed. (*********) Lemma R_dist_refl : forall x y:R, R_dist x y = 0 <-> x = y. Proof. - unfold R_dist in |- *; intros; split_Rabs; split; intros. + unfold R_dist; intros; split_Rabs; split; intros. rewrite (Ropp_minus_distr x y) in H; apply sym_eq; apply (Rminus_diag_uniq y x H). rewrite (Ropp_minus_distr x y); generalize (sym_eq H); intro; @@ -776,13 +761,13 @@ Qed. Lemma R_dist_eq : forall x:R, R_dist x x = 0. Proof. - unfold R_dist in |- *; intros; split_Rabs; intros; ring. + unfold R_dist; intros; split_Rabs; intros; ring. Qed. (***********) Lemma R_dist_tri : forall x y z:R, R_dist x y <= R_dist x z + R_dist z y. Proof. - intros; unfold R_dist in |- *; replace (x - y) with (x - z + (z - y)); + intros; unfold R_dist; replace (x - y) with (x - z + (z - y)); [ apply (Rabs_triang (x - z) (z - y)) | ring ]. Qed. @@ -790,7 +775,7 @@ Qed. Lemma R_dist_plus : forall a b c d:R, R_dist (a + c) (b + d) <= R_dist a b + R_dist c d. Proof. - intros; unfold R_dist in |- *; + intros; unfold R_dist; replace (a + c - (b + d)) with (a - b + (c - d)). exact (Rabs_triang (a - b) (c - d)). ring. |