summaryrefslogtreecommitdiff
path: root/theories/Reals/Rderiv.v
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <smimram@debian.org>2006-11-21 21:38:49 +0000
committerGravatar Samuel Mimram <smimram@debian.org>2006-11-21 21:38:49 +0000
commit208a0f7bfa5249f9795e6e225f309cbe715c0fad (patch)
tree591e9e512063e34099782e2518573f15ffeac003 /theories/Reals/Rderiv.v
parentde0085539583f59dc7c4bf4e272e18711d565466 (diff)
Imported Upstream version 8.1~gammaupstream/8.1.gamma
Diffstat (limited to 'theories/Reals/Rderiv.v')
-rw-r--r--theories/Reals/Rderiv.v717
1 files changed, 364 insertions, 353 deletions
diff --git a/theories/Reals/Rderiv.v b/theories/Reals/Rderiv.v
index 42663de6..e2fd2efe 100644
--- a/theories/Reals/Rderiv.v
+++ b/theories/Reals/Rderiv.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rderiv.v 5920 2004-07-16 20:01:26Z herbelin $ i*)
+(*i $Id: Rderiv.v 9245 2006-10-17 12:53:34Z notin $ i*)
(*********************************************************)
(** Definition of the derivative,continuity *)
@@ -34,398 +34,409 @@ Definition D_in (f d:R -> R) (D:R -> Prop) (x0:R) : Prop :=
(*********)
Lemma cont_deriv :
- forall (f d:R -> R) (D:R -> Prop) (x0:R),
- D_in f d D x0 -> continue_in f D x0.
-unfold continue_in in |- *; unfold D_in in |- *; unfold limit1_in in |- *;
- unfold limit_in in |- *; unfold Rdiv in |- *; simpl in |- *;
- intros; elim (H eps H0); clear H; intros; elim H;
- clear H; intros; elim (Req_dec (d x0) 0); intro.
-split with (Rmin 1 x); split.
-elim (Rmin_Rgt 1 x 0); intros a b; apply (b (conj Rlt_0_1 H)).
-intros; elim H3; clear H3; intros;
- generalize (let (H1, H2) := Rmin_Rgt 1 x (R_dist x1 x0) in H1);
- unfold Rgt in |- *; intro; elim (H5 H4); clear H5;
- intros; generalize (H1 x1 (conj H3 H6)); clear H1;
- intro; unfold D_x in H3; elim H3; intros.
-rewrite H2 in H1; unfold R_dist in |- *; unfold R_dist in H1;
- cut (Rabs (f x1 - f x0) < eps * Rabs (x1 - x0)).
-intro; unfold R_dist in H5;
- generalize (Rmult_lt_compat_l eps (Rabs (x1 - x0)) 1 H0 H5);
- rewrite Rmult_1_r; intro; apply Rlt_trans with (r2 := eps * Rabs (x1 - x0));
- assumption.
-rewrite (Rminus_0_r ((f x1 - f x0) * / (x1 - x0))) in H1;
- rewrite Rabs_mult in H1; cut (x1 - x0 <> 0).
-intro; rewrite (Rabs_Rinv (x1 - x0) H9) in H1;
- generalize
- (Rmult_lt_compat_l (Rabs (x1 - x0)) (Rabs (f x1 - f x0) * / Rabs (x1 - x0))
- eps (Rabs_pos_lt (x1 - x0) H9) H1); intro; rewrite Rmult_comm in H10;
- rewrite Rmult_assoc in H10; rewrite Rinv_l in H10.
-rewrite Rmult_1_r in H10; rewrite Rmult_comm; assumption.
-apply Rabs_no_R0; auto.
-apply Rminus_eq_contra; auto.
+ forall (f d:R -> R) (D:R -> Prop) (x0:R),
+ D_in f d D x0 -> continue_in f D x0.
+Proof.
+ unfold continue_in in |- *; unfold D_in in |- *; unfold limit1_in in |- *;
+ unfold limit_in in |- *; unfold Rdiv in |- *; simpl in |- *;
+ intros; elim (H eps H0); clear H; intros; elim H;
+ clear H; intros; elim (Req_dec (d x0) 0); intro.
+ split with (Rmin 1 x); split.
+ elim (Rmin_Rgt 1 x 0); intros a b; apply (b (conj Rlt_0_1 H)).
+ intros; elim H3; clear H3; intros;
+ generalize (let (H1, H2) := Rmin_Rgt 1 x (R_dist x1 x0) in H1);
+ unfold Rgt in |- *; intro; elim (H5 H4); clear H5;
+ intros; generalize (H1 x1 (conj H3 H6)); clear H1;
+ intro; unfold D_x in H3; elim H3; intros.
+ rewrite H2 in H1; unfold R_dist in |- *; unfold R_dist in H1;
+ cut (Rabs (f x1 - f x0) < eps * Rabs (x1 - x0)).
+ intro; unfold R_dist in H5;
+ generalize (Rmult_lt_compat_l eps (Rabs (x1 - x0)) 1 H0 H5);
+ rewrite Rmult_1_r; intro; apply Rlt_trans with (r2 := eps * Rabs (x1 - x0));
+ assumption.
+ rewrite (Rminus_0_r ((f x1 - f x0) * / (x1 - x0))) in H1;
+ rewrite Rabs_mult in H1; cut (x1 - x0 <> 0).
+ intro; rewrite (Rabs_Rinv (x1 - x0) H9) in H1;
+ generalize
+ (Rmult_lt_compat_l (Rabs (x1 - x0)) (Rabs (f x1 - f x0) * / Rabs (x1 - x0))
+ eps (Rabs_pos_lt (x1 - x0) H9) H1); intro; rewrite Rmult_comm in H10;
+ rewrite Rmult_assoc in H10; rewrite Rinv_l in H10.
+ rewrite Rmult_1_r in H10; rewrite Rmult_comm; assumption.
+ apply Rabs_no_R0; auto.
+ apply Rminus_eq_contra; auto.
(**)
- split with (Rmin (Rmin (/ 2) x) (eps * / Rabs (2 * d x0))); split.
-cut (Rmin (/ 2) x > 0).
-cut (eps * / Rabs (2 * d x0) > 0).
-intros; elim (Rmin_Rgt (Rmin (/ 2) x) (eps * / Rabs (2 * d x0)) 0);
- intros a b; apply (b (conj H4 H3)).
-apply Rmult_gt_0_compat; auto.
-unfold Rgt in |- *; apply Rinv_0_lt_compat; apply Rabs_pos_lt;
- apply Rmult_integral_contrapositive; split.
-discrR.
-assumption.
-elim (Rmin_Rgt (/ 2) x 0); intros a b; cut (0 < 2).
-intro; generalize (Rinv_0_lt_compat 2 H3); intro; fold (/ 2 > 0) in H4;
- apply (b (conj H4 H)).
-fourier.
-intros; elim H3; clear H3; intros;
- generalize
- (let (H1, H2) :=
- Rmin_Rgt (Rmin (/ 2) x) (eps * / Rabs (2 * d x0)) (R_dist x1 x0) in
- H1); unfold Rgt in |- *; intro; elim (H5 H4); clear H5;
- intros; generalize (let (H1, H2) := Rmin_Rgt (/ 2) x (R_dist x1 x0) in H1);
- unfold Rgt in |- *; intro; elim (H7 H5); clear H7;
- intros; clear H4 H5; generalize (H1 x1 (conj H3 H8));
- clear H1; intro; unfold D_x in H3; elim H3; intros;
- generalize (sym_not_eq H5); clear H5; intro H5;
- generalize (Rminus_eq_contra x1 x0 H5); intro; generalize H1;
- pattern (d x0) at 1 in |- *;
- rewrite <- (let (H1, H2) := Rmult_ne (d x0) in H2);
- rewrite <- (Rinv_l (x1 - x0) H9); unfold R_dist in |- *;
- unfold Rminus at 1 in |- *; rewrite (Rmult_comm (f x1 - f x0) (/ (x1 - x0)));
- rewrite (Rmult_comm (/ (x1 - x0) * (x1 - x0)) (d x0));
- rewrite <- (Ropp_mult_distr_l_reverse (d x0) (/ (x1 - x0) * (x1 - x0)));
- rewrite (Rmult_comm (- d x0) (/ (x1 - x0) * (x1 - x0)));
- rewrite (Rmult_assoc (/ (x1 - x0)) (x1 - x0) (- d x0));
- rewrite <-
- (Rmult_plus_distr_l (/ (x1 - x0)) (f x1 - f x0) ((x1 - x0) * - d x0))
- ; rewrite (Rabs_mult (/ (x1 - x0)) (f x1 - f x0 + (x1 - x0) * - d x0));
- clear H1; intro;
- generalize
- (Rmult_lt_compat_l (Rabs (x1 - x0))
- (Rabs (/ (x1 - x0)) * Rabs (f x1 - f x0 + (x1 - x0) * - d x0)) eps
- (Rabs_pos_lt (x1 - x0) H9) H1);
- rewrite <-
- (Rmult_assoc (Rabs (x1 - x0)) (Rabs (/ (x1 - x0)))
- (Rabs (f x1 - f x0 + (x1 - x0) * - d x0)));
- rewrite (Rabs_Rinv (x1 - x0) H9);
- rewrite (Rinv_r (Rabs (x1 - x0)) (Rabs_no_R0 (x1 - x0) H9));
- rewrite
- (let (H1, H2) := Rmult_ne (Rabs (f x1 - f x0 + (x1 - x0) * - d x0)) in H2)
- ; generalize (Rabs_triang_inv (f x1 - f x0) ((x1 - x0) * d x0));
- intro; rewrite (Rmult_comm (x1 - x0) (- d x0));
- rewrite (Ropp_mult_distr_l_reverse (d x0) (x1 - x0));
- fold (f x1 - f x0 - d x0 * (x1 - x0)) in |- *;
- rewrite (Rmult_comm (x1 - x0) (d x0)) in H10; clear H1;
- intro;
- generalize
- (Rle_lt_trans (Rabs (f x1 - f x0) - Rabs (d x0 * (x1 - x0)))
- (Rabs (f x1 - f x0 - d x0 * (x1 - x0))) (Rabs (x1 - x0) * eps) H10 H1);
- clear H1; intro;
- generalize
- (Rplus_lt_compat_l (Rabs (d x0 * (x1 - x0)))
- (Rabs (f x1 - f x0) - Rabs (d x0 * (x1 - x0))) (
- Rabs (x1 - x0) * eps) H1); unfold Rminus at 2 in |- *;
- rewrite (Rplus_comm (Rabs (f x1 - f x0)) (- Rabs (d x0 * (x1 - x0))));
- rewrite <-
- (Rplus_assoc (Rabs (d x0 * (x1 - x0))) (- Rabs (d x0 * (x1 - x0)))
- (Rabs (f x1 - f x0))); rewrite (Rplus_opp_r (Rabs (d x0 * (x1 - x0))));
- rewrite (let (H1, H2) := Rplus_ne (Rabs (f x1 - f x0)) in H2);
- clear H1; intro; cut (Rabs (d x0 * (x1 - x0)) + Rabs (x1 - x0) * eps < eps).
-intro;
- apply
- (Rlt_trans (Rabs (f x1 - f x0))
- (Rabs (d x0 * (x1 - x0)) + Rabs (x1 - x0) * eps) eps H1 H11).
-clear H1 H5 H3 H10; generalize (Rabs_pos_lt (d x0) H2); intro;
- unfold Rgt in H0;
- generalize (Rmult_lt_compat_l eps (R_dist x1 x0) (/ 2) H0 H7);
- clear H7; intro;
- generalize
- (Rmult_lt_compat_l (Rabs (d x0)) (R_dist x1 x0) (
- eps * / Rabs (2 * d x0)) H1 H6); clear H6; intro;
- rewrite (Rmult_comm eps (R_dist x1 x0)) in H3; unfold R_dist in H3, H5;
- rewrite <- (Rabs_mult (d x0) (x1 - x0)) in H5;
- rewrite (Rabs_mult 2 (d x0)) in H5; cut (Rabs 2 <> 0).
-intro; fold (Rabs (d x0) > 0) in H1;
- rewrite
- (Rinv_mult_distr (Rabs 2) (Rabs (d x0)) H6
- (Rlt_dichotomy_converse (Rabs (d x0)) 0 (or_intror (Rabs (d x0) < 0) H1)))
- in H5;
- rewrite (Rmult_comm (Rabs (d x0)) (eps * (/ Rabs 2 * / Rabs (d x0)))) in H5;
- rewrite <- (Rmult_assoc eps (/ Rabs 2) (/ Rabs (d x0))) in H5;
- rewrite (Rmult_assoc (eps * / Rabs 2) (/ Rabs (d x0)) (Rabs (d x0))) in H5;
- rewrite
- (Rinv_l (Rabs (d x0))
- (Rlt_dichotomy_converse (Rabs (d x0)) 0 (or_intror (Rabs (d x0) < 0) H1)))
- in H5; rewrite (let (H1, H2) := Rmult_ne (eps * / Rabs 2) in H1) in H5;
- cut (Rabs 2 = 2).
-intro; rewrite H7 in H5;
- generalize
- (Rplus_lt_compat (Rabs (d x0 * (x1 - x0))) (eps * / 2)
- (Rabs (x1 - x0) * eps) (eps * / 2) H5 H3); intro;
- rewrite eps2 in H10; assumption.
-unfold Rabs in |- *; case (Rcase_abs 2); auto.
- intro; cut (0 < 2).
-intro; generalize (Rlt_asym 0 2 H7); intro; elimtype False; auto.
-fourier.
-apply Rabs_no_R0.
-discrR.
+ split with (Rmin (Rmin (/ 2) x) (eps * / Rabs (2 * d x0))); split.
+ cut (Rmin (/ 2) x > 0).
+ cut (eps * / Rabs (2 * d x0) > 0).
+ intros; elim (Rmin_Rgt (Rmin (/ 2) x) (eps * / Rabs (2 * d x0)) 0);
+ intros a b; apply (b (conj H4 H3)).
+ apply Rmult_gt_0_compat; auto.
+ unfold Rgt in |- *; apply Rinv_0_lt_compat; apply Rabs_pos_lt;
+ apply Rmult_integral_contrapositive; split.
+ discrR.
+ assumption.
+ elim (Rmin_Rgt (/ 2) x 0); intros a b; cut (0 < 2).
+ intro; generalize (Rinv_0_lt_compat 2 H3); intro; fold (/ 2 > 0) in H4;
+ apply (b (conj H4 H)).
+ fourier.
+ intros; elim H3; clear H3; intros;
+ generalize
+ (let (H1, H2) :=
+ Rmin_Rgt (Rmin (/ 2) x) (eps * / Rabs (2 * d x0)) (R_dist x1 x0) in
+ H1); unfold Rgt in |- *; intro; elim (H5 H4); clear H5;
+ intros; generalize (let (H1, H2) := Rmin_Rgt (/ 2) x (R_dist x1 x0) in H1);
+ unfold Rgt in |- *; intro; elim (H7 H5); clear H7;
+ intros; clear H4 H5; generalize (H1 x1 (conj H3 H8));
+ clear H1; intro; unfold D_x in H3; elim H3; intros;
+ generalize (sym_not_eq H5); clear H5; intro H5;
+ generalize (Rminus_eq_contra x1 x0 H5); intro; generalize H1;
+ pattern (d x0) at 1 in |- *;
+ rewrite <- (let (H1, H2) := Rmult_ne (d x0) in H2);
+ rewrite <- (Rinv_l (x1 - x0) H9); unfold R_dist in |- *;
+ unfold Rminus at 1 in |- *; rewrite (Rmult_comm (f x1 - f x0) (/ (x1 - x0)));
+ rewrite (Rmult_comm (/ (x1 - x0) * (x1 - x0)) (d x0));
+ rewrite <- (Ropp_mult_distr_l_reverse (d x0) (/ (x1 - x0) * (x1 - x0)));
+ rewrite (Rmult_comm (- d x0) (/ (x1 - x0) * (x1 - x0)));
+ rewrite (Rmult_assoc (/ (x1 - x0)) (x1 - x0) (- d x0));
+ rewrite <-
+ (Rmult_plus_distr_l (/ (x1 - x0)) (f x1 - f x0) ((x1 - x0) * - d x0))
+ ; rewrite (Rabs_mult (/ (x1 - x0)) (f x1 - f x0 + (x1 - x0) * - d x0));
+ clear H1; intro;
+ generalize
+ (Rmult_lt_compat_l (Rabs (x1 - x0))
+ (Rabs (/ (x1 - x0)) * Rabs (f x1 - f x0 + (x1 - x0) * - d x0)) eps
+ (Rabs_pos_lt (x1 - x0) H9) H1);
+ rewrite <-
+ (Rmult_assoc (Rabs (x1 - x0)) (Rabs (/ (x1 - x0)))
+ (Rabs (f x1 - f x0 + (x1 - x0) * - d x0)));
+ rewrite (Rabs_Rinv (x1 - x0) H9);
+ rewrite (Rinv_r (Rabs (x1 - x0)) (Rabs_no_R0 (x1 - x0) H9));
+ rewrite
+ (let (H1, H2) := Rmult_ne (Rabs (f x1 - f x0 + (x1 - x0) * - d x0)) in H2)
+ ; generalize (Rabs_triang_inv (f x1 - f x0) ((x1 - x0) * d x0));
+ intro; rewrite (Rmult_comm (x1 - x0) (- d x0));
+ rewrite (Ropp_mult_distr_l_reverse (d x0) (x1 - x0));
+ fold (f x1 - f x0 - d x0 * (x1 - x0)) in |- *;
+ rewrite (Rmult_comm (x1 - x0) (d x0)) in H10; clear H1;
+ intro;
+ generalize
+ (Rle_lt_trans (Rabs (f x1 - f x0) - Rabs (d x0 * (x1 - x0)))
+ (Rabs (f x1 - f x0 - d x0 * (x1 - x0))) (Rabs (x1 - x0) * eps) H10 H1);
+ clear H1; intro;
+ generalize
+ (Rplus_lt_compat_l (Rabs (d x0 * (x1 - x0)))
+ (Rabs (f x1 - f x0) - Rabs (d x0 * (x1 - x0))) (
+ Rabs (x1 - x0) * eps) H1); unfold Rminus at 2 in |- *;
+ rewrite (Rplus_comm (Rabs (f x1 - f x0)) (- Rabs (d x0 * (x1 - x0))));
+ rewrite <-
+ (Rplus_assoc (Rabs (d x0 * (x1 - x0))) (- Rabs (d x0 * (x1 - x0)))
+ (Rabs (f x1 - f x0))); rewrite (Rplus_opp_r (Rabs (d x0 * (x1 - x0))));
+ rewrite (let (H1, H2) := Rplus_ne (Rabs (f x1 - f x0)) in H2);
+ clear H1; intro; cut (Rabs (d x0 * (x1 - x0)) + Rabs (x1 - x0) * eps < eps).
+ intro;
+ apply
+ (Rlt_trans (Rabs (f x1 - f x0))
+ (Rabs (d x0 * (x1 - x0)) + Rabs (x1 - x0) * eps) eps H1 H11).
+ clear H1 H5 H3 H10; generalize (Rabs_pos_lt (d x0) H2); intro;
+ unfold Rgt in H0;
+ generalize (Rmult_lt_compat_l eps (R_dist x1 x0) (/ 2) H0 H7);
+ clear H7; intro;
+ generalize
+ (Rmult_lt_compat_l (Rabs (d x0)) (R_dist x1 x0) (
+ eps * / Rabs (2 * d x0)) H1 H6); clear H6; intro;
+ rewrite (Rmult_comm eps (R_dist x1 x0)) in H3; unfold R_dist in H3, H5;
+ rewrite <- (Rabs_mult (d x0) (x1 - x0)) in H5;
+ rewrite (Rabs_mult 2 (d x0)) in H5; cut (Rabs 2 <> 0).
+ intro; fold (Rabs (d x0) > 0) in H1;
+ rewrite
+ (Rinv_mult_distr (Rabs 2) (Rabs (d x0)) H6
+ (Rlt_dichotomy_converse (Rabs (d x0)) 0 (or_intror (Rabs (d x0) < 0) H1)))
+ in H5;
+ rewrite (Rmult_comm (Rabs (d x0)) (eps * (/ Rabs 2 * / Rabs (d x0)))) in H5;
+ rewrite <- (Rmult_assoc eps (/ Rabs 2) (/ Rabs (d x0))) in H5;
+ rewrite (Rmult_assoc (eps * / Rabs 2) (/ Rabs (d x0)) (Rabs (d x0))) in H5;
+ rewrite
+ (Rinv_l (Rabs (d x0))
+ (Rlt_dichotomy_converse (Rabs (d x0)) 0 (or_intror (Rabs (d x0) < 0) H1)))
+ in H5; rewrite (let (H1, H2) := Rmult_ne (eps * / Rabs 2) in H1) in H5;
+ cut (Rabs 2 = 2).
+ intro; rewrite H7 in H5;
+ generalize
+ (Rplus_lt_compat (Rabs (d x0 * (x1 - x0))) (eps * / 2)
+ (Rabs (x1 - x0) * eps) (eps * / 2) H5 H3); intro;
+ rewrite eps2 in H10; assumption.
+ unfold Rabs in |- *; case (Rcase_abs 2); auto.
+ intro; cut (0 < 2).
+ intro; generalize (Rlt_asym 0 2 H7); intro; elimtype False; auto.
+ fourier.
+ apply Rabs_no_R0.
+ discrR.
Qed.
(*********)
Lemma Dconst :
- forall (D:R -> Prop) (y x0:R), D_in (fun x:R => y) (fun x:R => 0) D x0.
-unfold D_in in |- *; intros; unfold limit1_in in |- *;
- unfold limit_in in |- *; unfold Rdiv in |- *; intros;
- simpl in |- *; split with eps; split; auto.
-intros; rewrite (Rminus_diag_eq y y (refl_equal y)); rewrite Rmult_0_l;
- unfold R_dist in |- *; rewrite (Rminus_diag_eq 0 0 (refl_equal 0));
- unfold Rabs in |- *; case (Rcase_abs 0); intro.
-absurd (0 < 0); auto.
-red in |- *; intro; apply (Rlt_irrefl 0 H1).
-unfold Rgt in H0; assumption.
+ forall (D:R -> Prop) (y x0:R), D_in (fun x:R => y) (fun x:R => 0) D x0.
+Proof.
+ unfold D_in in |- *; intros; unfold limit1_in in |- *;
+ unfold limit_in in |- *; unfold Rdiv in |- *; intros;
+ simpl in |- *; split with eps; split; auto.
+ intros; rewrite (Rminus_diag_eq y y (refl_equal y)); rewrite Rmult_0_l;
+ unfold R_dist in |- *; rewrite (Rminus_diag_eq 0 0 (refl_equal 0));
+ unfold Rabs in |- *; case (Rcase_abs 0); intro.
+ absurd (0 < 0); auto.
+ red in |- *; intro; apply (Rlt_irrefl 0 H1).
+ unfold Rgt in H0; assumption.
Qed.
(*********)
Lemma Dx :
- forall (D:R -> Prop) (x0:R), D_in (fun x:R => x) (fun x:R => 1) D x0.
-unfold D_in in |- *; unfold Rdiv in |- *; intros; unfold limit1_in in |- *;
- unfold limit_in in |- *; intros; simpl in |- *; split with eps;
- split; auto.
-intros; elim H0; clear H0; intros; unfold D_x in H0; elim H0; intros;
- rewrite (Rinv_r (x - x0) (Rminus_eq_contra x x0 (sym_not_eq H3)));
- unfold R_dist in |- *; rewrite (Rminus_diag_eq 1 1 (refl_equal 1));
- unfold Rabs in |- *; case (Rcase_abs 0); intro.
-absurd (0 < 0); auto.
-red in |- *; intro; apply (Rlt_irrefl 0 r).
-unfold Rgt in H; assumption.
+ forall (D:R -> Prop) (x0:R), D_in (fun x:R => x) (fun x:R => 1) D x0.
+Proof.
+ unfold D_in in |- *; unfold Rdiv in |- *; intros; unfold limit1_in in |- *;
+ unfold limit_in in |- *; intros; simpl in |- *; split with eps;
+ split; auto.
+ intros; elim H0; clear H0; intros; unfold D_x in H0; elim H0; intros;
+ rewrite (Rinv_r (x - x0) (Rminus_eq_contra x x0 (sym_not_eq H3)));
+ unfold R_dist in |- *; rewrite (Rminus_diag_eq 1 1 (refl_equal 1));
+ unfold Rabs in |- *; case (Rcase_abs 0); intro.
+ absurd (0 < 0); auto.
+ red in |- *; intro; apply (Rlt_irrefl 0 r).
+ unfold Rgt in H; assumption.
Qed.
(*********)
Lemma Dadd :
- forall (D:R -> Prop) (df dg f g:R -> R) (x0:R),
- D_in f df D x0 ->
- D_in g dg D x0 ->
- D_in (fun x:R => f x + g x) (fun x:R => df x + dg x) D x0.
-unfold D_in in |- *; intros;
- generalize
- (limit_plus (fun x:R => (f x - f x0) * / (x - x0))
- (fun x:R => (g x - g x0) * / (x - x0)) (D_x D x0) (
- df x0) (dg x0) x0 H H0); clear H H0; unfold limit1_in in |- *;
- unfold limit_in in |- *; simpl in |- *; intros; elim (H eps H0);
- clear H; intros; elim H; clear H; intros; split with x;
- split; auto; intros; generalize (H1 x1 H2); clear H1;
- intro; rewrite (Rmult_comm (f x1 - f x0) (/ (x1 - x0))) in H1;
- rewrite (Rmult_comm (g x1 - g x0) (/ (x1 - x0))) in H1;
- rewrite <- (Rmult_plus_distr_l (/ (x1 - x0)) (f x1 - f x0) (g x1 - g x0))
- in H1;
- rewrite (Rmult_comm (/ (x1 - x0)) (f x1 - f x0 + (g x1 - g x0))) in H1;
- cut (f x1 - f x0 + (g x1 - g x0) = f x1 + g x1 - (f x0 + g x0)).
-intro; rewrite H3 in H1; assumption.
-ring.
+ forall (D:R -> Prop) (df dg f g:R -> R) (x0:R),
+ D_in f df D x0 ->
+ D_in g dg D x0 ->
+ D_in (fun x:R => f x + g x) (fun x:R => df x + dg x) D x0.
+Proof.
+ unfold D_in in |- *; intros;
+ generalize
+ (limit_plus (fun x:R => (f x - f x0) * / (x - x0))
+ (fun x:R => (g x - g x0) * / (x - x0)) (D_x D x0) (
+ df x0) (dg x0) x0 H H0); clear H H0; unfold limit1_in in |- *;
+ unfold limit_in in |- *; simpl in |- *; intros; elim (H eps H0);
+ clear H; intros; elim H; clear H; intros; split with x;
+ split; auto; intros; generalize (H1 x1 H2); clear H1;
+ intro; rewrite (Rmult_comm (f x1 - f x0) (/ (x1 - x0))) in H1;
+ rewrite (Rmult_comm (g x1 - g x0) (/ (x1 - x0))) in H1;
+ rewrite <- (Rmult_plus_distr_l (/ (x1 - x0)) (f x1 - f x0) (g x1 - g x0))
+ in H1;
+ rewrite (Rmult_comm (/ (x1 - x0)) (f x1 - f x0 + (g x1 - g x0))) in H1;
+ cut (f x1 - f x0 + (g x1 - g x0) = f x1 + g x1 - (f x0 + g x0)).
+ intro; rewrite H3 in H1; assumption.
+ ring.
Qed.
(*********)
Lemma Dmult :
- forall (D:R -> Prop) (df dg f g:R -> R) (x0:R),
- D_in f df D x0 ->
- D_in g dg D x0 ->
- D_in (fun x:R => f x * g x) (fun x:R => df x * g x + f x * dg x) D x0.
-intros; unfold D_in in |- *; generalize H H0; intros; unfold D_in in H, H0;
- generalize (cont_deriv f df D x0 H1); unfold continue_in in |- *;
- intro;
- generalize
- (limit_mul (fun x:R => (g x - g x0) * / (x - x0)) (
- fun x:R => f x) (D_x D x0) (dg x0) (f x0) x0 H0 H3);
- intro; cut (limit1_in (fun x:R => g x0) (D_x D x0) (g x0) x0).
-intro;
- generalize
- (limit_mul (fun x:R => (f x - f x0) * / (x - x0)) (
- fun _:R => g x0) (D_x D x0) (df x0) (g x0) x0 H H5);
- clear H H0 H1 H2 H3 H5; intro;
- generalize
- (limit_plus (fun x:R => (f x - f x0) * / (x - x0) * g x0)
- (fun x:R => (g x - g x0) * / (x - x0) * f x) (
- D_x D x0) (df x0 * g x0) (dg x0 * f x0) x0 H H4);
- clear H4 H; intro; unfold limit1_in in H; unfold limit_in in H;
- simpl in H; unfold limit1_in in |- *; unfold limit_in in |- *;
- simpl in |- *; intros; elim (H eps H0); clear H; intros;
- elim H; clear H; intros; split with x; split; auto;
- intros; generalize (H1 x1 H2); clear H1; intro;
- rewrite (Rmult_comm (f x1 - f x0) (/ (x1 - x0))) in H1;
- rewrite (Rmult_comm (g x1 - g x0) (/ (x1 - x0))) in H1;
- rewrite (Rmult_assoc (/ (x1 - x0)) (f x1 - f x0) (g x0)) in H1;
- rewrite (Rmult_assoc (/ (x1 - x0)) (g x1 - g x0) (f x1)) in H1;
- rewrite <-
- (Rmult_plus_distr_l (/ (x1 - x0)) ((f x1 - f x0) * g x0)
- ((g x1 - g x0) * f x1)) in H1;
- rewrite
- (Rmult_comm (/ (x1 - x0)) ((f x1 - f x0) * g x0 + (g x1 - g x0) * f x1))
- in H1; rewrite (Rmult_comm (dg x0) (f x0)) in H1;
- cut
- ((f x1 - f x0) * g x0 + (g x1 - g x0) * f x1 = f x1 * g x1 - f x0 * g x0).
-intro; rewrite H3 in H1; assumption.
-ring.
-unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *; intros;
- split with eps; split; auto; intros; elim (R_dist_refl (g x0) (g x0));
- intros a b; rewrite (b (refl_equal (g x0))); unfold Rgt in H;
- assumption.
+ forall (D:R -> Prop) (df dg f g:R -> R) (x0:R),
+ D_in f df D x0 ->
+ D_in g dg D x0 ->
+ D_in (fun x:R => f x * g x) (fun x:R => df x * g x + f x * dg x) D x0.
+Proof.
+ intros; unfold D_in in |- *; generalize H H0; intros; unfold D_in in H, H0;
+ generalize (cont_deriv f df D x0 H1); unfold continue_in in |- *;
+ intro;
+ generalize
+ (limit_mul (fun x:R => (g x - g x0) * / (x - x0)) (
+ fun x:R => f x) (D_x D x0) (dg x0) (f x0) x0 H0 H3);
+ intro; cut (limit1_in (fun x:R => g x0) (D_x D x0) (g x0) x0).
+ intro;
+ generalize
+ (limit_mul (fun x:R => (f x - f x0) * / (x - x0)) (
+ fun _:R => g x0) (D_x D x0) (df x0) (g x0) x0 H H5);
+ clear H H0 H1 H2 H3 H5; intro;
+ generalize
+ (limit_plus (fun x:R => (f x - f x0) * / (x - x0) * g x0)
+ (fun x:R => (g x - g x0) * / (x - x0) * f x) (
+ D_x D x0) (df x0 * g x0) (dg x0 * f x0) x0 H H4);
+ clear H4 H; intro; unfold limit1_in in H; unfold limit_in in H;
+ simpl in H; unfold limit1_in in |- *; unfold limit_in in |- *;
+ simpl in |- *; intros; elim (H eps H0); clear H; intros;
+ elim H; clear H; intros; split with x; split; auto;
+ intros; generalize (H1 x1 H2); clear H1; intro;
+ rewrite (Rmult_comm (f x1 - f x0) (/ (x1 - x0))) in H1;
+ rewrite (Rmult_comm (g x1 - g x0) (/ (x1 - x0))) in H1;
+ rewrite (Rmult_assoc (/ (x1 - x0)) (f x1 - f x0) (g x0)) in H1;
+ rewrite (Rmult_assoc (/ (x1 - x0)) (g x1 - g x0) (f x1)) in H1;
+ rewrite <-
+ (Rmult_plus_distr_l (/ (x1 - x0)) ((f x1 - f x0) * g x0)
+ ((g x1 - g x0) * f x1)) in H1;
+ rewrite
+ (Rmult_comm (/ (x1 - x0)) ((f x1 - f x0) * g x0 + (g x1 - g x0) * f x1))
+ in H1; rewrite (Rmult_comm (dg x0) (f x0)) in H1;
+ cut
+ ((f x1 - f x0) * g x0 + (g x1 - g x0) * f x1 = f x1 * g x1 - f x0 * g x0).
+ intro; rewrite H3 in H1; assumption.
+ ring.
+ unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *; intros;
+ split with eps; split; auto; intros; elim (R_dist_refl (g x0) (g x0));
+ intros a b; rewrite (b (refl_equal (g x0))); unfold Rgt in H;
+ assumption.
Qed.
(*********)
Lemma Dmult_const :
- forall (D:R -> Prop) (f df:R -> R) (x0 a:R),
- D_in f df D x0 -> D_in (fun x:R => a * f x) (fun x:R => a * df x) D x0.
-intros;
- generalize (Dmult D (fun _:R => 0) df (fun _:R => a) f x0 (Dconst D a x0) H);
- unfold D_in in |- *; intros; rewrite (Rmult_0_l (f x0)) in H0;
- rewrite (let (H1, H2) := Rplus_ne (a * df x0) in H2) in H0;
- assumption.
+ forall (D:R -> Prop) (f df:R -> R) (x0 a:R),
+ D_in f df D x0 -> D_in (fun x:R => a * f x) (fun x:R => a * df x) D x0.
+Proof.
+ intros;
+ generalize (Dmult D (fun _:R => 0) df (fun _:R => a) f x0 (Dconst D a x0) H);
+ unfold D_in in |- *; intros; rewrite (Rmult_0_l (f x0)) in H0;
+ rewrite (let (H1, H2) := Rplus_ne (a * df x0) in H2) in H0;
+ assumption.
Qed.
(*********)
Lemma Dopp :
- forall (D:R -> Prop) (f df:R -> R) (x0:R),
- D_in f df D x0 -> D_in (fun x:R => - f x) (fun x:R => - df x) D x0.
-intros; generalize (Dmult_const D f df x0 (-1) H); unfold D_in in |- *;
- unfold limit1_in in |- *; unfold limit_in in |- *;
- intros; generalize (H0 eps H1); clear H0; intro; elim H0;
- clear H0; intros; elim H0; clear H0; simpl in |- *;
- intros; split with x; split; auto.
-intros; generalize (H2 x1 H3); clear H2; intro;
- rewrite Ropp_mult_distr_l_reverse in H2;
- rewrite Ropp_mult_distr_l_reverse in H2;
- rewrite Ropp_mult_distr_l_reverse in H2;
- rewrite (let (H1, H2) := Rmult_ne (f x1) in H2) in H2;
- rewrite (let (H1, H2) := Rmult_ne (f x0) in H2) in H2;
- rewrite (let (H1, H2) := Rmult_ne (df x0) in H2) in H2;
- assumption.
+ forall (D:R -> Prop) (f df:R -> R) (x0:R),
+ D_in f df D x0 -> D_in (fun x:R => - f x) (fun x:R => - df x) D x0.
+Proof.
+ intros; generalize (Dmult_const D f df x0 (-1) H); unfold D_in in |- *;
+ unfold limit1_in in |- *; unfold limit_in in |- *;
+ intros; generalize (H0 eps H1); clear H0; intro; elim H0;
+ clear H0; intros; elim H0; clear H0; simpl in |- *;
+ intros; split with x; split; auto.
+ intros; generalize (H2 x1 H3); clear H2; intro;
+ rewrite Ropp_mult_distr_l_reverse in H2;
+ rewrite Ropp_mult_distr_l_reverse in H2;
+ rewrite Ropp_mult_distr_l_reverse in H2;
+ rewrite (let (H1, H2) := Rmult_ne (f x1) in H2) in H2;
+ rewrite (let (H1, H2) := Rmult_ne (f x0) in H2) in H2;
+ rewrite (let (H1, H2) := Rmult_ne (df x0) in H2) in H2;
+ assumption.
Qed.
(*********)
Lemma Dminus :
- forall (D:R -> Prop) (df dg f g:R -> R) (x0:R),
- D_in f df D x0 ->
- D_in g dg D x0 ->
- D_in (fun x:R => f x - g x) (fun x:R => df x - dg x) D x0.
-unfold Rminus in |- *; intros; generalize (Dopp D g dg x0 H0); intro;
- apply (Dadd D df (fun x:R => - dg x) f (fun x:R => - g x) x0);
- assumption.
+ forall (D:R -> Prop) (df dg f g:R -> R) (x0:R),
+ D_in f df D x0 ->
+ D_in g dg D x0 ->
+ D_in (fun x:R => f x - g x) (fun x:R => df x - dg x) D x0.
+Proof.
+ unfold Rminus in |- *; intros; generalize (Dopp D g dg x0 H0); intro;
+ apply (Dadd D df (fun x:R => - dg x) f (fun x:R => - g x) x0);
+ assumption.
Qed.
(*********)
Lemma Dx_pow_n :
- forall (n:nat) (D:R -> Prop) (x0:R),
- D_in (fun x:R => x ^ n) (fun x:R => INR n * x ^ (n - 1)) D x0.
-simple induction n; intros.
-simpl in |- *; rewrite Rmult_0_l; apply Dconst.
-intros; cut (n0 = (S n0 - 1)%nat);
- [ intro a; rewrite <- a; clear a | simpl in |- *; apply minus_n_O ].
-generalize
- (Dmult D (fun _:R => 1) (fun x:R => INR n0 * x ^ (n0 - 1)) (
- fun x:R => x) (fun x:R => x ^ n0) x0 (Dx D x0) (
- H D x0)); unfold D_in in |- *; unfold limit1_in in |- *;
- unfold limit_in in |- *; simpl in |- *; intros; elim (H0 eps H1);
- clear H0; intros; elim H0; clear H0; intros; split with x;
- split; auto.
-intros; generalize (H2 x1 H3); clear H2 H3; intro;
- rewrite (let (H1, H2) := Rmult_ne (x0 ^ n0) in H2) in H2;
- rewrite (tech_pow_Rmult x1 n0) in H2; rewrite (tech_pow_Rmult x0 n0) in H2;
- rewrite (Rmult_comm (INR n0) (x0 ^ (n0 - 1))) in H2;
- rewrite <- (Rmult_assoc x0 (x0 ^ (n0 - 1)) (INR n0)) in H2;
- rewrite (tech_pow_Rmult x0 (n0 - 1)) in H2; elim (classic (n0 = 0%nat));
- intro cond.
-rewrite cond in H2; rewrite cond; simpl in H2; simpl in |- *;
- cut (1 + x0 * 1 * 0 = 1 * 1);
- [ intro A; rewrite A in H2; assumption | ring ].
-cut (n0 <> 0%nat -> S (n0 - 1) = n0); [ intro | omega ];
- rewrite (H3 cond) in H2; rewrite (Rmult_comm (x0 ^ n0) (INR n0)) in H2;
- rewrite (tech_pow_Rplus x0 n0 n0) in H2; assumption.
+ forall (n:nat) (D:R -> Prop) (x0:R),
+ D_in (fun x:R => x ^ n) (fun x:R => INR n * x ^ (n - 1)) D x0.
+Proof.
+ simple induction n; intros.
+ simpl in |- *; rewrite Rmult_0_l; apply Dconst.
+ intros; cut (n0 = (S n0 - 1)%nat);
+ [ intro a; rewrite <- a; clear a | simpl in |- *; apply minus_n_O ].
+ generalize
+ (Dmult D (fun _:R => 1) (fun x:R => INR n0 * x ^ (n0 - 1)) (
+ fun x:R => x) (fun x:R => x ^ n0) x0 (Dx D x0) (
+ H D x0)); unfold D_in in |- *; unfold limit1_in in |- *;
+ unfold limit_in in |- *; simpl in |- *; intros; elim (H0 eps H1);
+ clear H0; intros; elim H0; clear H0; intros; split with x;
+ split; auto.
+ intros; generalize (H2 x1 H3); clear H2 H3; intro;
+ rewrite (let (H1, H2) := Rmult_ne (x0 ^ n0) in H2) in H2;
+ rewrite (tech_pow_Rmult x1 n0) in H2; rewrite (tech_pow_Rmult x0 n0) in H2;
+ rewrite (Rmult_comm (INR n0) (x0 ^ (n0 - 1))) in H2;
+ rewrite <- (Rmult_assoc x0 (x0 ^ (n0 - 1)) (INR n0)) in H2;
+ rewrite (tech_pow_Rmult x0 (n0 - 1)) in H2; elim (classic (n0 = 0%nat));
+ intro cond.
+ rewrite cond in H2; rewrite cond; simpl in H2; simpl in |- *;
+ cut (1 + x0 * 1 * 0 = 1 * 1);
+ [ intro A; rewrite A in H2; assumption | ring ].
+ cut (n0 <> 0%nat -> S (n0 - 1) = n0); [ intro | omega ];
+ rewrite (H3 cond) in H2; rewrite (Rmult_comm (x0 ^ n0) (INR n0)) in H2;
+ rewrite (tech_pow_Rplus x0 n0 n0) in H2; assumption.
Qed.
(*********)
Lemma Dcomp :
- forall (Df Dg:R -> Prop) (df dg f g:R -> R) (x0:R),
- D_in f df Df x0 ->
- D_in g dg Dg (f x0) ->
- D_in (fun x:R => g (f x)) (fun x:R => df x * dg (f x)) (Dgf Df Dg f) x0.
-intros Df Dg df dg f g x0 H H0; generalize H H0; unfold D_in in |- *;
- unfold Rdiv in |- *; intros;
- generalize
- (limit_comp f (fun x:R => (g x - g (f x0)) * / (x - f x0)) (
- D_x Df x0) (D_x Dg (f x0)) (f x0) (dg (f x0)) x0);
- intro; generalize (cont_deriv f df Df x0 H); intro;
- unfold continue_in in H4; generalize (H3 H4 H2); clear H3;
- intro;
- generalize
- (limit_mul (fun x:R => (g (f x) - g (f x0)) * / (f x - f x0))
- (fun x:R => (f x - f x0) * / (x - x0))
- (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (dg (f x0)) (
- df x0) x0 H3); intro;
- cut
- (limit1_in (fun x:R => (f x - f x0) * / (x - x0))
- (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (df x0) x0).
-intro; generalize (H5 H6); clear H5; intro;
- generalize
- (limit_mul (fun x:R => (f x - f x0) * / (x - x0)) (
- fun x:R => dg (f x0)) (D_x Df x0) (df x0) (dg (f x0)) x0 H1
- (limit_free (fun x:R => dg (f x0)) (D_x Df x0) x0 x0));
- intro; unfold limit1_in in |- *; unfold limit_in in |- *;
- simpl in |- *; unfold limit1_in in H5, H7; unfold limit_in in H5, H7;
- simpl in H5, H7; intros; elim (H5 eps H8); elim (H7 eps H8);
- clear H5 H7; intros; elim H5; elim H7; clear H5 H7;
- intros; split with (Rmin x x1); split.
-elim (Rmin_Rgt x x1 0); intros a b; apply (b (conj H9 H5)); clear a b.
-intros; elim H11; clear H11; intros; elim (Rmin_Rgt x x1 (R_dist x2 x0));
- intros a b; clear b; unfold Rgt in a; elim (a H12);
- clear H5 a; intros; unfold D_x, Dgf in H11, H7, H10;
- clear H12; elim (classic (f x2 = f x0)); intro.
-elim H11; clear H11; intros; elim H11; clear H11; intros;
- generalize (H10 x2 (conj (conj H11 H14) H5)); intro;
- rewrite (Rminus_diag_eq (f x2) (f x0) H12) in H16;
- rewrite (Rmult_0_l (/ (x2 - x0))) in H16;
- rewrite (Rmult_0_l (dg (f x0))) in H16; rewrite H12;
- rewrite (Rminus_diag_eq (g (f x0)) (g (f x0)) (refl_equal (g (f x0))));
- rewrite (Rmult_0_l (/ (x2 - x0))); assumption.
-clear H10 H5; elim H11; clear H11; intros; elim H5; clear H5; intros;
- cut
- (((Df x2 /\ x0 <> x2) /\ Dg (f x2) /\ f x0 <> f x2) /\ R_dist x2 x0 < x1);
- auto; intro; generalize (H7 x2 H14); intro;
- generalize (Rminus_eq_contra (f x2) (f x0) H12); intro;
- rewrite
- (Rmult_assoc (g (f x2) - g (f x0)) (/ (f x2 - f x0))
- ((f x2 - f x0) * / (x2 - x0))) in H15;
- rewrite <- (Rmult_assoc (/ (f x2 - f x0)) (f x2 - f x0) (/ (x2 - x0)))
- in H15; rewrite (Rinv_l (f x2 - f x0) H16) in H15;
- rewrite (let (H1, H2) := Rmult_ne (/ (x2 - x0)) in H2) in H15;
- rewrite (Rmult_comm (df x0) (dg (f x0))); assumption.
-clear H5 H3 H4 H2; unfold limit1_in in |- *; unfold limit_in in |- *;
- simpl in |- *; unfold limit1_in in H1; unfold limit_in in H1;
- simpl in H1; intros; elim (H1 eps H2); clear H1; intros;
- elim H1; clear H1; intros; split with x; split; auto;
- intros; unfold D_x, Dgf in H4, H3; elim H4; clear H4;
- intros; elim H4; clear H4; intros; exact (H3 x1 (conj H4 H5)).
+ forall (Df Dg:R -> Prop) (df dg f g:R -> R) (x0:R),
+ D_in f df Df x0 ->
+ D_in g dg Dg (f x0) ->
+ D_in (fun x:R => g (f x)) (fun x:R => df x * dg (f x)) (Dgf Df Dg f) x0.
+Proof.
+ intros Df Dg df dg f g x0 H H0; generalize H H0; unfold D_in in |- *;
+ unfold Rdiv in |- *; intros;
+ generalize
+ (limit_comp f (fun x:R => (g x - g (f x0)) * / (x - f x0)) (
+ D_x Df x0) (D_x Dg (f x0)) (f x0) (dg (f x0)) x0);
+ intro; generalize (cont_deriv f df Df x0 H); intro;
+ unfold continue_in in H4; generalize (H3 H4 H2); clear H3;
+ intro;
+ generalize
+ (limit_mul (fun x:R => (g (f x) - g (f x0)) * / (f x - f x0))
+ (fun x:R => (f x - f x0) * / (x - x0))
+ (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (dg (f x0)) (
+ df x0) x0 H3); intro;
+ cut
+ (limit1_in (fun x:R => (f x - f x0) * / (x - x0))
+ (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (df x0) x0).
+ intro; generalize (H5 H6); clear H5; intro;
+ generalize
+ (limit_mul (fun x:R => (f x - f x0) * / (x - x0)) (
+ fun x:R => dg (f x0)) (D_x Df x0) (df x0) (dg (f x0)) x0 H1
+ (limit_free (fun x:R => dg (f x0)) (D_x Df x0) x0 x0));
+ intro; unfold limit1_in in |- *; unfold limit_in in |- *;
+ simpl in |- *; unfold limit1_in in H5, H7; unfold limit_in in H5, H7;
+ simpl in H5, H7; intros; elim (H5 eps H8); elim (H7 eps H8);
+ clear H5 H7; intros; elim H5; elim H7; clear H5 H7;
+ intros; split with (Rmin x x1); split.
+ elim (Rmin_Rgt x x1 0); intros a b; apply (b (conj H9 H5)); clear a b.
+ intros; elim H11; clear H11; intros; elim (Rmin_Rgt x x1 (R_dist x2 x0));
+ intros a b; clear b; unfold Rgt in a; elim (a H12);
+ clear H5 a; intros; unfold D_x, Dgf in H11, H7, H10;
+ clear H12; elim (classic (f x2 = f x0)); intro.
+ elim H11; clear H11; intros; elim H11; clear H11; intros;
+ generalize (H10 x2 (conj (conj H11 H14) H5)); intro;
+ rewrite (Rminus_diag_eq (f x2) (f x0) H12) in H16;
+ rewrite (Rmult_0_l (/ (x2 - x0))) in H16;
+ rewrite (Rmult_0_l (dg (f x0))) in H16; rewrite H12;
+ rewrite (Rminus_diag_eq (g (f x0)) (g (f x0)) (refl_equal (g (f x0))));
+ rewrite (Rmult_0_l (/ (x2 - x0))); assumption.
+ clear H10 H5; elim H11; clear H11; intros; elim H5; clear H5; intros;
+ cut
+ (((Df x2 /\ x0 <> x2) /\ Dg (f x2) /\ f x0 <> f x2) /\ R_dist x2 x0 < x1);
+ auto; intro; generalize (H7 x2 H14); intro;
+ generalize (Rminus_eq_contra (f x2) (f x0) H12); intro;
+ rewrite
+ (Rmult_assoc (g (f x2) - g (f x0)) (/ (f x2 - f x0))
+ ((f x2 - f x0) * / (x2 - x0))) in H15;
+ rewrite <- (Rmult_assoc (/ (f x2 - f x0)) (f x2 - f x0) (/ (x2 - x0)))
+ in H15; rewrite (Rinv_l (f x2 - f x0) H16) in H15;
+ rewrite (let (H1, H2) := Rmult_ne (/ (x2 - x0)) in H2) in H15;
+ rewrite (Rmult_comm (df x0) (dg (f x0))); assumption.
+ clear H5 H3 H4 H2; unfold limit1_in in |- *; unfold limit_in in |- *;
+ simpl in |- *; unfold limit1_in in H1; unfold limit_in in H1;
+ simpl in H1; intros; elim (H1 eps H2); clear H1; intros;
+ elim H1; clear H1; intros; split with x; split; auto;
+ intros; unfold D_x, Dgf in H4, H3; elim H4; clear H4;
+ intros; elim H4; clear H4; intros; exact (H3 x1 (conj H4 H5)).
Qed.
(*********)
Lemma D_pow_n :
- forall (n:nat) (D:R -> Prop) (x0:R) (expr dexpr:R -> R),
- D_in expr dexpr D x0 ->
- D_in (fun x:R => expr x ^ n)
- (fun x:R => INR n * expr x ^ (n - 1) * dexpr x) (
- Dgf D D expr) x0.
-intros n D x0 expr dexpr H;
- generalize
- (Dcomp D D dexpr (fun x:R => INR n * x ^ (n - 1)) expr (
- fun x:R => x ^ n) x0 H (Dx_pow_n n D (expr x0)));
- intro; unfold D_in in |- *; unfold limit1_in in |- *;
- unfold limit_in in |- *; simpl in |- *; intros; unfold D_in in H0;
- unfold limit1_in in H0; unfold limit_in in H0; simpl in H0;
- elim (H0 eps H1); clear H0; intros; elim H0; clear H0;
- intros; split with x; split; intros; auto.
-cut
- (dexpr x0 * (INR n * expr x0 ^ (n - 1)) =
- INR n * expr x0 ^ (n - 1) * dexpr x0);
- [ intro Rew; rewrite <- Rew; exact (H2 x1 H3) | ring ].
+ forall (n:nat) (D:R -> Prop) (x0:R) (expr dexpr:R -> R),
+ D_in expr dexpr D x0 ->
+ D_in (fun x:R => expr x ^ n)
+ (fun x:R => INR n * expr x ^ (n - 1) * dexpr x) (
+ Dgf D D expr) x0.
+Proof.
+ intros n D x0 expr dexpr H;
+ generalize
+ (Dcomp D D dexpr (fun x:R => INR n * x ^ (n - 1)) expr (
+ fun x:R => x ^ n) x0 H (Dx_pow_n n D (expr x0)));
+ intro; unfold D_in in |- *; unfold limit1_in in |- *;
+ unfold limit_in in |- *; simpl in |- *; intros; unfold D_in in H0;
+ unfold limit1_in in H0; unfold limit_in in H0; simpl in H0;
+ elim (H0 eps H1); clear H0; intros; elim H0; clear H0;
+ intros; split with x; split; intros; auto.
+ cut
+ (dexpr x0 * (INR n * expr x0 ^ (n - 1)) =
+ INR n * expr x0 ^ (n - 1) * dexpr x0);
+ [ intro Rew; rewrite <- Rew; exact (H2 x1 H3) | ring ].
Qed.