diff options
author | Samuel Mimram <samuel.mimram@ens-lyon.org> | 2004-07-28 21:54:47 +0000 |
---|---|---|
committer | Samuel Mimram <samuel.mimram@ens-lyon.org> | 2004-07-28 21:54:47 +0000 |
commit | 6b649aba925b6f7462da07599fe67ebb12a3460e (patch) | |
tree | 43656bcaa51164548f3fa14e5b10de5ef1088574 /theories/Reals/Rderiv.v |
Imported Upstream version 8.0pl1upstream/8.0pl1
Diffstat (limited to 'theories/Reals/Rderiv.v')
-rw-r--r-- | theories/Reals/Rderiv.v | 431 |
1 files changed, 431 insertions, 0 deletions
diff --git a/theories/Reals/Rderiv.v b/theories/Reals/Rderiv.v new file mode 100644 index 00000000..81db80ab --- /dev/null +++ b/theories/Reals/Rderiv.v @@ -0,0 +1,431 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: Rderiv.v,v 1.15.2.1 2004/07/16 19:31:12 herbelin Exp $ i*) + +(*********************************************************) +(** Definition of the derivative,continuity *) +(* *) +(*********************************************************) + +Require Import Rbase. +Require Import Rfunctions. +Require Import Rlimit. +Require Import Fourier. +Require Import Classical_Prop. +Require Import Classical_Pred_Type. +Require Import Omega. Open Local Scope R_scope. + +(*********) +Definition D_x (D:R -> Prop) (y x:R) : Prop := D x /\ y <> x. + +(*********) +Definition continue_in (f:R -> R) (D:R -> Prop) (x0:R) : Prop := + limit1_in f (D_x D x0) (f x0) x0. + +(*********) +Definition D_in (f d:R -> R) (D:R -> Prop) (x0:R) : Prop := + limit1_in (fun x:R => (f x - f x0) / (x - x0)) (D_x D x0) (d x0) x0. + +(*********) +Lemma cont_deriv : + forall (f d:R -> R) (D:R -> Prop) (x0:R), + D_in f d D x0 -> continue_in f D x0. +unfold continue_in in |- *; unfold D_in in |- *; unfold limit1_in in |- *; + unfold limit_in in |- *; unfold Rdiv in |- *; simpl in |- *; + intros; elim (H eps H0); clear H; intros; elim H; + clear H; intros; elim (Req_dec (d x0) 0); intro. +split with (Rmin 1 x); split. +elim (Rmin_Rgt 1 x 0); intros a b; apply (b (conj Rlt_0_1 H)). +intros; elim H3; clear H3; intros; + generalize (let (H1, H2) := Rmin_Rgt 1 x (R_dist x1 x0) in H1); + unfold Rgt in |- *; intro; elim (H5 H4); clear H5; + intros; generalize (H1 x1 (conj H3 H6)); clear H1; + intro; unfold D_x in H3; elim H3; intros. +rewrite H2 in H1; unfold R_dist in |- *; unfold R_dist in H1; + cut (Rabs (f x1 - f x0) < eps * Rabs (x1 - x0)). +intro; unfold R_dist in H5; + generalize (Rmult_lt_compat_l eps (Rabs (x1 - x0)) 1 H0 H5); + rewrite Rmult_1_r; intro; apply Rlt_trans with (r2 := eps * Rabs (x1 - x0)); + assumption. +rewrite (Rminus_0_r ((f x1 - f x0) * / (x1 - x0))) in H1; + rewrite Rabs_mult in H1; cut (x1 - x0 <> 0). +intro; rewrite (Rabs_Rinv (x1 - x0) H9) in H1; + generalize + (Rmult_lt_compat_l (Rabs (x1 - x0)) (Rabs (f x1 - f x0) * / Rabs (x1 - x0)) + eps (Rabs_pos_lt (x1 - x0) H9) H1); intro; rewrite Rmult_comm in H10; + rewrite Rmult_assoc in H10; rewrite Rinv_l in H10. +rewrite Rmult_1_r in H10; rewrite Rmult_comm; assumption. +apply Rabs_no_R0; auto. +apply Rminus_eq_contra; auto. +(**) + split with (Rmin (Rmin (/ 2) x) (eps * / Rabs (2 * d x0))); split. +cut (Rmin (/ 2) x > 0). +cut (eps * / Rabs (2 * d x0) > 0). +intros; elim (Rmin_Rgt (Rmin (/ 2) x) (eps * / Rabs (2 * d x0)) 0); + intros a b; apply (b (conj H4 H3)). +apply Rmult_gt_0_compat; auto. +unfold Rgt in |- *; apply Rinv_0_lt_compat; apply Rabs_pos_lt; + apply Rmult_integral_contrapositive; split. +discrR. +assumption. +elim (Rmin_Rgt (/ 2) x 0); intros a b; cut (0 < 2). +intro; generalize (Rinv_0_lt_compat 2 H3); intro; fold (/ 2 > 0) in H4; + apply (b (conj H4 H)). +fourier. +intros; elim H3; clear H3; intros; + generalize + (let (H1, H2) := + Rmin_Rgt (Rmin (/ 2) x) (eps * / Rabs (2 * d x0)) (R_dist x1 x0) in + H1); unfold Rgt in |- *; intro; elim (H5 H4); clear H5; + intros; generalize (let (H1, H2) := Rmin_Rgt (/ 2) x (R_dist x1 x0) in H1); + unfold Rgt in |- *; intro; elim (H7 H5); clear H7; + intros; clear H4 H5; generalize (H1 x1 (conj H3 H8)); + clear H1; intro; unfold D_x in H3; elim H3; intros; + generalize (sym_not_eq H5); clear H5; intro H5; + generalize (Rminus_eq_contra x1 x0 H5); intro; generalize H1; + pattern (d x0) at 1 in |- *; + rewrite <- (let (H1, H2) := Rmult_ne (d x0) in H2); + rewrite <- (Rinv_l (x1 - x0) H9); unfold R_dist in |- *; + unfold Rminus at 1 in |- *; rewrite (Rmult_comm (f x1 - f x0) (/ (x1 - x0))); + rewrite (Rmult_comm (/ (x1 - x0) * (x1 - x0)) (d x0)); + rewrite <- (Ropp_mult_distr_l_reverse (d x0) (/ (x1 - x0) * (x1 - x0))); + rewrite (Rmult_comm (- d x0) (/ (x1 - x0) * (x1 - x0))); + rewrite (Rmult_assoc (/ (x1 - x0)) (x1 - x0) (- d x0)); + rewrite <- + (Rmult_plus_distr_l (/ (x1 - x0)) (f x1 - f x0) ((x1 - x0) * - d x0)) + ; rewrite (Rabs_mult (/ (x1 - x0)) (f x1 - f x0 + (x1 - x0) * - d x0)); + clear H1; intro; + generalize + (Rmult_lt_compat_l (Rabs (x1 - x0)) + (Rabs (/ (x1 - x0)) * Rabs (f x1 - f x0 + (x1 - x0) * - d x0)) eps + (Rabs_pos_lt (x1 - x0) H9) H1); + rewrite <- + (Rmult_assoc (Rabs (x1 - x0)) (Rabs (/ (x1 - x0))) + (Rabs (f x1 - f x0 + (x1 - x0) * - d x0))); + rewrite (Rabs_Rinv (x1 - x0) H9); + rewrite (Rinv_r (Rabs (x1 - x0)) (Rabs_no_R0 (x1 - x0) H9)); + rewrite + (let (H1, H2) := Rmult_ne (Rabs (f x1 - f x0 + (x1 - x0) * - d x0)) in H2) + ; generalize (Rabs_triang_inv (f x1 - f x0) ((x1 - x0) * d x0)); + intro; rewrite (Rmult_comm (x1 - x0) (- d x0)); + rewrite (Ropp_mult_distr_l_reverse (d x0) (x1 - x0)); + fold (f x1 - f x0 - d x0 * (x1 - x0)) in |- *; + rewrite (Rmult_comm (x1 - x0) (d x0)) in H10; clear H1; + intro; + generalize + (Rle_lt_trans (Rabs (f x1 - f x0) - Rabs (d x0 * (x1 - x0))) + (Rabs (f x1 - f x0 - d x0 * (x1 - x0))) (Rabs (x1 - x0) * eps) H10 H1); + clear H1; intro; + generalize + (Rplus_lt_compat_l (Rabs (d x0 * (x1 - x0))) + (Rabs (f x1 - f x0) - Rabs (d x0 * (x1 - x0))) ( + Rabs (x1 - x0) * eps) H1); unfold Rminus at 2 in |- *; + rewrite (Rplus_comm (Rabs (f x1 - f x0)) (- Rabs (d x0 * (x1 - x0)))); + rewrite <- + (Rplus_assoc (Rabs (d x0 * (x1 - x0))) (- Rabs (d x0 * (x1 - x0))) + (Rabs (f x1 - f x0))); rewrite (Rplus_opp_r (Rabs (d x0 * (x1 - x0)))); + rewrite (let (H1, H2) := Rplus_ne (Rabs (f x1 - f x0)) in H2); + clear H1; intro; cut (Rabs (d x0 * (x1 - x0)) + Rabs (x1 - x0) * eps < eps). +intro; + apply + (Rlt_trans (Rabs (f x1 - f x0)) + (Rabs (d x0 * (x1 - x0)) + Rabs (x1 - x0) * eps) eps H1 H11). +clear H1 H5 H3 H10; generalize (Rabs_pos_lt (d x0) H2); intro; + unfold Rgt in H0; + generalize (Rmult_lt_compat_l eps (R_dist x1 x0) (/ 2) H0 H7); + clear H7; intro; + generalize + (Rmult_lt_compat_l (Rabs (d x0)) (R_dist x1 x0) ( + eps * / Rabs (2 * d x0)) H1 H6); clear H6; intro; + rewrite (Rmult_comm eps (R_dist x1 x0)) in H3; unfold R_dist in H3, H5; + rewrite <- (Rabs_mult (d x0) (x1 - x0)) in H5; + rewrite (Rabs_mult 2 (d x0)) in H5; cut (Rabs 2 <> 0). +intro; fold (Rabs (d x0) > 0) in H1; + rewrite + (Rinv_mult_distr (Rabs 2) (Rabs (d x0)) H6 + (Rlt_dichotomy_converse (Rabs (d x0)) 0 (or_intror (Rabs (d x0) < 0) H1))) + in H5; + rewrite (Rmult_comm (Rabs (d x0)) (eps * (/ Rabs 2 * / Rabs (d x0)))) in H5; + rewrite <- (Rmult_assoc eps (/ Rabs 2) (/ Rabs (d x0))) in H5; + rewrite (Rmult_assoc (eps * / Rabs 2) (/ Rabs (d x0)) (Rabs (d x0))) in H5; + rewrite + (Rinv_l (Rabs (d x0)) + (Rlt_dichotomy_converse (Rabs (d x0)) 0 (or_intror (Rabs (d x0) < 0) H1))) + in H5; rewrite (let (H1, H2) := Rmult_ne (eps * / Rabs 2) in H1) in H5; + cut (Rabs 2 = 2). +intro; rewrite H7 in H5; + generalize + (Rplus_lt_compat (Rabs (d x0 * (x1 - x0))) (eps * / 2) + (Rabs (x1 - x0) * eps) (eps * / 2) H5 H3); intro; + rewrite eps2 in H10; assumption. +unfold Rabs in |- *; case (Rcase_abs 2); auto. + intro; cut (0 < 2). +intro; generalize (Rlt_asym 0 2 H7); intro; elimtype False; auto. +fourier. +apply Rabs_no_R0. +discrR. +Qed. + + +(*********) +Lemma Dconst : + forall (D:R -> Prop) (y x0:R), D_in (fun x:R => y) (fun x:R => 0) D x0. +unfold D_in in |- *; intros; unfold limit1_in in |- *; + unfold limit_in in |- *; unfold Rdiv in |- *; intros; + simpl in |- *; split with eps; split; auto. +intros; rewrite (Rminus_diag_eq y y (refl_equal y)); rewrite Rmult_0_l; + unfold R_dist in |- *; rewrite (Rminus_diag_eq 0 0 (refl_equal 0)); + unfold Rabs in |- *; case (Rcase_abs 0); intro. +absurd (0 < 0); auto. +red in |- *; intro; apply (Rlt_irrefl 0 H1). +unfold Rgt in H0; assumption. +Qed. + +(*********) +Lemma Dx : + forall (D:R -> Prop) (x0:R), D_in (fun x:R => x) (fun x:R => 1) D x0. +unfold D_in in |- *; unfold Rdiv in |- *; intros; unfold limit1_in in |- *; + unfold limit_in in |- *; intros; simpl in |- *; split with eps; + split; auto. +intros; elim H0; clear H0; intros; unfold D_x in H0; elim H0; intros; + rewrite (Rinv_r (x - x0) (Rminus_eq_contra x x0 (sym_not_eq H3))); + unfold R_dist in |- *; rewrite (Rminus_diag_eq 1 1 (refl_equal 1)); + unfold Rabs in |- *; case (Rcase_abs 0); intro. +absurd (0 < 0); auto. +red in |- *; intro; apply (Rlt_irrefl 0 r). +unfold Rgt in H; assumption. +Qed. + +(*********) +Lemma Dadd : + forall (D:R -> Prop) (df dg f g:R -> R) (x0:R), + D_in f df D x0 -> + D_in g dg D x0 -> + D_in (fun x:R => f x + g x) (fun x:R => df x + dg x) D x0. +unfold D_in in |- *; intros; + generalize + (limit_plus (fun x:R => (f x - f x0) * / (x - x0)) + (fun x:R => (g x - g x0) * / (x - x0)) (D_x D x0) ( + df x0) (dg x0) x0 H H0); clear H H0; unfold limit1_in in |- *; + unfold limit_in in |- *; simpl in |- *; intros; elim (H eps H0); + clear H; intros; elim H; clear H; intros; split with x; + split; auto; intros; generalize (H1 x1 H2); clear H1; + intro; rewrite (Rmult_comm (f x1 - f x0) (/ (x1 - x0))) in H1; + rewrite (Rmult_comm (g x1 - g x0) (/ (x1 - x0))) in H1; + rewrite <- (Rmult_plus_distr_l (/ (x1 - x0)) (f x1 - f x0) (g x1 - g x0)) + in H1; + rewrite (Rmult_comm (/ (x1 - x0)) (f x1 - f x0 + (g x1 - g x0))) in H1; + cut (f x1 - f x0 + (g x1 - g x0) = f x1 + g x1 - (f x0 + g x0)). +intro; rewrite H3 in H1; assumption. +ring. +Qed. + +(*********) +Lemma Dmult : + forall (D:R -> Prop) (df dg f g:R -> R) (x0:R), + D_in f df D x0 -> + D_in g dg D x0 -> + D_in (fun x:R => f x * g x) (fun x:R => df x * g x + f x * dg x) D x0. +intros; unfold D_in in |- *; generalize H H0; intros; unfold D_in in H, H0; + generalize (cont_deriv f df D x0 H1); unfold continue_in in |- *; + intro; + generalize + (limit_mul (fun x:R => (g x - g x0) * / (x - x0)) ( + fun x:R => f x) (D_x D x0) (dg x0) (f x0) x0 H0 H3); + intro; cut (limit1_in (fun x:R => g x0) (D_x D x0) (g x0) x0). +intro; + generalize + (limit_mul (fun x:R => (f x - f x0) * / (x - x0)) ( + fun _:R => g x0) (D_x D x0) (df x0) (g x0) x0 H H5); + clear H H0 H1 H2 H3 H5; intro; + generalize + (limit_plus (fun x:R => (f x - f x0) * / (x - x0) * g x0) + (fun x:R => (g x - g x0) * / (x - x0) * f x) ( + D_x D x0) (df x0 * g x0) (dg x0 * f x0) x0 H H4); + clear H4 H; intro; unfold limit1_in in H; unfold limit_in in H; + simpl in H; unfold limit1_in in |- *; unfold limit_in in |- *; + simpl in |- *; intros; elim (H eps H0); clear H; intros; + elim H; clear H; intros; split with x; split; auto; + intros; generalize (H1 x1 H2); clear H1; intro; + rewrite (Rmult_comm (f x1 - f x0) (/ (x1 - x0))) in H1; + rewrite (Rmult_comm (g x1 - g x0) (/ (x1 - x0))) in H1; + rewrite (Rmult_assoc (/ (x1 - x0)) (f x1 - f x0) (g x0)) in H1; + rewrite (Rmult_assoc (/ (x1 - x0)) (g x1 - g x0) (f x1)) in H1; + rewrite <- + (Rmult_plus_distr_l (/ (x1 - x0)) ((f x1 - f x0) * g x0) + ((g x1 - g x0) * f x1)) in H1; + rewrite + (Rmult_comm (/ (x1 - x0)) ((f x1 - f x0) * g x0 + (g x1 - g x0) * f x1)) + in H1; rewrite (Rmult_comm (dg x0) (f x0)) in H1; + cut + ((f x1 - f x0) * g x0 + (g x1 - g x0) * f x1 = f x1 * g x1 - f x0 * g x0). +intro; rewrite H3 in H1; assumption. +ring. +unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *; intros; + split with eps; split; auto; intros; elim (R_dist_refl (g x0) (g x0)); + intros a b; rewrite (b (refl_equal (g x0))); unfold Rgt in H; + assumption. +Qed. + +(*********) +Lemma Dmult_const : + forall (D:R -> Prop) (f df:R -> R) (x0 a:R), + D_in f df D x0 -> D_in (fun x:R => a * f x) (fun x:R => a * df x) D x0. +intros; + generalize (Dmult D (fun _:R => 0) df (fun _:R => a) f x0 (Dconst D a x0) H); + unfold D_in in |- *; intros; rewrite (Rmult_0_l (f x0)) in H0; + rewrite (let (H1, H2) := Rplus_ne (a * df x0) in H2) in H0; + assumption. +Qed. + +(*********) +Lemma Dopp : + forall (D:R -> Prop) (f df:R -> R) (x0:R), + D_in f df D x0 -> D_in (fun x:R => - f x) (fun x:R => - df x) D x0. +intros; generalize (Dmult_const D f df x0 (-1) H); unfold D_in in |- *; + unfold limit1_in in |- *; unfold limit_in in |- *; + intros; generalize (H0 eps H1); clear H0; intro; elim H0; + clear H0; intros; elim H0; clear H0; simpl in |- *; + intros; split with x; split; auto. +intros; generalize (H2 x1 H3); clear H2; intro; + rewrite Ropp_mult_distr_l_reverse in H2; + rewrite Ropp_mult_distr_l_reverse in H2; + rewrite Ropp_mult_distr_l_reverse in H2; + rewrite (let (H1, H2) := Rmult_ne (f x1) in H2) in H2; + rewrite (let (H1, H2) := Rmult_ne (f x0) in H2) in H2; + rewrite (let (H1, H2) := Rmult_ne (df x0) in H2) in H2; + assumption. +Qed. + +(*********) +Lemma Dminus : + forall (D:R -> Prop) (df dg f g:R -> R) (x0:R), + D_in f df D x0 -> + D_in g dg D x0 -> + D_in (fun x:R => f x - g x) (fun x:R => df x - dg x) D x0. +unfold Rminus in |- *; intros; generalize (Dopp D g dg x0 H0); intro; + apply (Dadd D df (fun x:R => - dg x) f (fun x:R => - g x) x0); + assumption. +Qed. + +(*********) +Lemma Dx_pow_n : + forall (n:nat) (D:R -> Prop) (x0:R), + D_in (fun x:R => x ^ n) (fun x:R => INR n * x ^ (n - 1)) D x0. +simple induction n; intros. +simpl in |- *; rewrite Rmult_0_l; apply Dconst. +intros; cut (n0 = (S n0 - 1)%nat); + [ intro a; rewrite <- a; clear a | simpl in |- *; apply minus_n_O ]. +generalize + (Dmult D (fun _:R => 1) (fun x:R => INR n0 * x ^ (n0 - 1)) ( + fun x:R => x) (fun x:R => x ^ n0) x0 (Dx D x0) ( + H D x0)); unfold D_in in |- *; unfold limit1_in in |- *; + unfold limit_in in |- *; simpl in |- *; intros; elim (H0 eps H1); + clear H0; intros; elim H0; clear H0; intros; split with x; + split; auto. +intros; generalize (H2 x1 H3); clear H2 H3; intro; + rewrite (let (H1, H2) := Rmult_ne (x0 ^ n0) in H2) in H2; + rewrite (tech_pow_Rmult x1 n0) in H2; rewrite (tech_pow_Rmult x0 n0) in H2; + rewrite (Rmult_comm (INR n0) (x0 ^ (n0 - 1))) in H2; + rewrite <- (Rmult_assoc x0 (x0 ^ (n0 - 1)) (INR n0)) in H2; + rewrite (tech_pow_Rmult x0 (n0 - 1)) in H2; elim (classic (n0 = 0%nat)); + intro cond. +rewrite cond in H2; rewrite cond; simpl in H2; simpl in |- *; + cut (1 + x0 * 1 * 0 = 1 * 1); + [ intro A; rewrite A in H2; assumption | ring ]. +cut (n0 <> 0%nat -> S (n0 - 1) = n0); [ intro | omega ]; + rewrite (H3 cond) in H2; rewrite (Rmult_comm (x0 ^ n0) (INR n0)) in H2; + rewrite (tech_pow_Rplus x0 n0 n0) in H2; assumption. +Qed. + +(*********) +Lemma Dcomp : + forall (Df Dg:R -> Prop) (df dg f g:R -> R) (x0:R), + D_in f df Df x0 -> + D_in g dg Dg (f x0) -> + D_in (fun x:R => g (f x)) (fun x:R => df x * dg (f x)) (Dgf Df Dg f) x0. +intros Df Dg df dg f g x0 H H0; generalize H H0; unfold D_in in |- *; + unfold Rdiv in |- *; intros; + generalize + (limit_comp f (fun x:R => (g x - g (f x0)) * / (x - f x0)) ( + D_x Df x0) (D_x Dg (f x0)) (f x0) (dg (f x0)) x0); + intro; generalize (cont_deriv f df Df x0 H); intro; + unfold continue_in in H4; generalize (H3 H4 H2); clear H3; + intro; + generalize + (limit_mul (fun x:R => (g (f x) - g (f x0)) * / (f x - f x0)) + (fun x:R => (f x - f x0) * / (x - x0)) + (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (dg (f x0)) ( + df x0) x0 H3); intro; + cut + (limit1_in (fun x:R => (f x - f x0) * / (x - x0)) + (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (df x0) x0). +intro; generalize (H5 H6); clear H5; intro; + generalize + (limit_mul (fun x:R => (f x - f x0) * / (x - x0)) ( + fun x:R => dg (f x0)) (D_x Df x0) (df x0) (dg (f x0)) x0 H1 + (limit_free (fun x:R => dg (f x0)) (D_x Df x0) x0 x0)); + intro; unfold limit1_in in |- *; unfold limit_in in |- *; + simpl in |- *; unfold limit1_in in H5, H7; unfold limit_in in H5, H7; + simpl in H5, H7; intros; elim (H5 eps H8); elim (H7 eps H8); + clear H5 H7; intros; elim H5; elim H7; clear H5 H7; + intros; split with (Rmin x x1); split. +elim (Rmin_Rgt x x1 0); intros a b; apply (b (conj H9 H5)); clear a b. +intros; elim H11; clear H11; intros; elim (Rmin_Rgt x x1 (R_dist x2 x0)); + intros a b; clear b; unfold Rgt in a; elim (a H12); + clear H5 a; intros; unfold D_x, Dgf in H11, H7, H10; + clear H12; elim (classic (f x2 = f x0)); intro. +elim H11; clear H11; intros; elim H11; clear H11; intros; + generalize (H10 x2 (conj (conj H11 H14) H5)); intro; + rewrite (Rminus_diag_eq (f x2) (f x0) H12) in H16; + rewrite (Rmult_0_l (/ (x2 - x0))) in H16; + rewrite (Rmult_0_l (dg (f x0))) in H16; rewrite H12; + rewrite (Rminus_diag_eq (g (f x0)) (g (f x0)) (refl_equal (g (f x0)))); + rewrite (Rmult_0_l (/ (x2 - x0))); assumption. +clear H10 H5; elim H11; clear H11; intros; elim H5; clear H5; intros; + cut + (((Df x2 /\ x0 <> x2) /\ Dg (f x2) /\ f x0 <> f x2) /\ R_dist x2 x0 < x1); + auto; intro; generalize (H7 x2 H14); intro; + generalize (Rminus_eq_contra (f x2) (f x0) H12); intro; + rewrite + (Rmult_assoc (g (f x2) - g (f x0)) (/ (f x2 - f x0)) + ((f x2 - f x0) * / (x2 - x0))) in H15; + rewrite <- (Rmult_assoc (/ (f x2 - f x0)) (f x2 - f x0) (/ (x2 - x0))) + in H15; rewrite (Rinv_l (f x2 - f x0) H16) in H15; + rewrite (let (H1, H2) := Rmult_ne (/ (x2 - x0)) in H2) in H15; + rewrite (Rmult_comm (df x0) (dg (f x0))); assumption. +clear H5 H3 H4 H2; unfold limit1_in in |- *; unfold limit_in in |- *; + simpl in |- *; unfold limit1_in in H1; unfold limit_in in H1; + simpl in H1; intros; elim (H1 eps H2); clear H1; intros; + elim H1; clear H1; intros; split with x; split; auto; + intros; unfold D_x, Dgf in H4, H3; elim H4; clear H4; + intros; elim H4; clear H4; intros; exact (H3 x1 (conj H4 H5)). +Qed. + +(*********) +Lemma D_pow_n : + forall (n:nat) (D:R -> Prop) (x0:R) (expr dexpr:R -> R), + D_in expr dexpr D x0 -> + D_in (fun x:R => expr x ^ n) + (fun x:R => INR n * expr x ^ (n - 1) * dexpr x) ( + Dgf D D expr) x0. +intros n D x0 expr dexpr H; + generalize + (Dcomp D D dexpr (fun x:R => INR n * x ^ (n - 1)) expr ( + fun x:R => x ^ n) x0 H (Dx_pow_n n D (expr x0))); + intro; unfold D_in in |- *; unfold limit1_in in |- *; + unfold limit_in in |- *; simpl in |- *; intros; unfold D_in in H0; + unfold limit1_in in H0; unfold limit_in in H0; simpl in H0; + elim (H0 eps H1); clear H0; intros; elim H0; clear H0; + intros; split with x; split; intros; auto. +cut + (dexpr x0 * (INR n * expr x0 ^ (n - 1)) = + INR n * expr x0 ^ (n - 1) * dexpr x0); + [ intro Rew; rewrite <- Rew; exact (H2 x1 H3) | ring ]. +Qed. |