diff options
author | Stephane Glondu <steph@glondu.net> | 2010-07-21 09:46:51 +0200 |
---|---|---|
committer | Stephane Glondu <steph@glondu.net> | 2010-07-21 09:46:51 +0200 |
commit | 5b7eafd0f00a16d78f99a27f5c7d5a0de77dc7e6 (patch) | |
tree | 631ad791a7685edafeb1fb2e8faeedc8379318ae /theories/Reals/Ranalysis1.v | |
parent | da178a880e3ace820b41d38b191d3785b82991f5 (diff) |
Imported Upstream snapshot 8.3~beta0+13298
Diffstat (limited to 'theories/Reals/Ranalysis1.v')
-rw-r--r-- | theories/Reals/Ranalysis1.v | 56 |
1 files changed, 28 insertions, 28 deletions
diff --git a/theories/Reals/Ranalysis1.v b/theories/Reals/Ranalysis1.v index 9414f7c9..1516b338 100644 --- a/theories/Reals/Ranalysis1.v +++ b/theories/Reals/Ranalysis1.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Ranalysis1.v 10710 2008-03-23 09:24:09Z herbelin $ i*) +(*i $Id$ i*) Require Import Rbase. Require Import Rfunctions. @@ -61,7 +61,7 @@ Definition strict_increasing f : Prop := forall x y:R, x < y -> f x < f y. Definition strict_decreasing f : Prop := forall x y:R, x < y -> f y < f x. Definition constant f : Prop := forall x y:R, f x = f y. -(**********) +(**********) Definition no_cond (x:R) : Prop := True. (**********) @@ -114,7 +114,7 @@ Qed. Lemma continuity_pt_const : forall f (x0:R), constant f -> continuity_pt f x0. Proof. unfold constant, continuity_pt in |- *; unfold continue_in in |- *; - unfold limit1_in in |- *; unfold limit_in in |- *; + unfold limit1_in in |- *; unfold limit_in in |- *; intros; exists 1; split; [ apply Rlt_0_1 | intros; generalize (H x x0); intro; rewrite H2; simpl in |- *; @@ -196,7 +196,7 @@ Proof. elim H5; intros; assumption. Qed. -(**********) +(**********) Lemma continuity_plus : forall f1 f2, continuity f1 -> continuity f2 -> continuity (f1 + f2). Proof. @@ -322,18 +322,18 @@ Proof. prove_sup0. rewrite (Rmult_comm 2); rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ]; rewrite Rmult_1_r; rewrite double; - pattern alp at 1 in |- *; replace alp with (alp + 0); + pattern alp at 1 in |- *; replace alp with (alp + 0); [ idtac | ring ]; apply Rplus_lt_compat_l; assumption. symmetry in |- *; apply Rabs_right; left; assumption. symmetry in |- *; apply Rabs_right; left; change (0 < / 2) in |- *; - apply Rinv_0_lt_compat; prove_sup0. + apply Rinv_0_lt_compat; prove_sup0. Qed. Lemma uniqueness_step2 : forall f (x l:R), derivable_pt_lim f x l -> limit1_in (fun h:R => (f (x + h) - f x) / h) (fun h:R => h <> 0) l 0. -Proof. +Proof. unfold derivable_pt_lim in |- *; intros; unfold limit1_in in |- *; unfold limit_in in |- *; intros. assert (H1 := H eps H0). @@ -418,10 +418,10 @@ Proof. intros; split. unfold D_in in |- *; unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *; unfold R_dist in |- *; intros. - apply derive_pt_eq_0. + apply derive_pt_eq_0. unfold derivable_pt_lim in |- *. intros; elim (H eps H0); intros alpha H1; elim H1; intros; - exists (mkposreal alpha H2); intros; generalize (H3 (x + h)); + exists (mkposreal alpha H2); intros; generalize (H3 (x + h)); intro; cut (x + h - x = h); [ intro; cut (D_x no_cond x (x + h) /\ Rabs (x + h - x) < alpha); [ intro; generalize (H6 H8); rewrite H7; intro; assumption @@ -434,7 +434,7 @@ Proof. intro. assert (H0 := derive_pt_eq_1 f x (df x) pr H). unfold D_in in |- *; unfold limit1_in in |- *; unfold limit_in in |- *; - unfold dist in |- *; simpl in |- *; unfold R_dist in |- *; + unfold dist in |- *; simpl in |- *; unfold R_dist in |- *; intros. elim (H0 eps H1); intros alpha H2; exists (pos alpha); split. apply (cond_pos alpha). @@ -454,7 +454,7 @@ Proof. simpl in |- *; unfold R_dist in |- *; intros. unfold derivable_pt_lim in |- *. intros; elim (H eps H0); intros alpha H1; elim H1; intros; - exists (mkposreal alpha H2); intros; generalize (H3 (x + h)); + exists (mkposreal alpha H2); intros; generalize (H3 (x + h)); intro; cut (x + h - x = h); [ intro; cut (D_x no_cond x (x + h) /\ Rabs (x + h - x) < alpha); [ intro; generalize (H6 H8); rewrite H7; intro; assumption @@ -467,7 +467,7 @@ Proof. intro. unfold derivable_pt_lim in H. unfold D_in in |- *; unfold limit1_in in |- *; unfold limit_in in |- *; - unfold dist in |- *; simpl in |- *; unfold R_dist in |- *; + unfold dist in |- *; simpl in |- *; unfold R_dist in |- *; intros. elim (H eps H0); intros alpha H2; exists (pos alpha); split. apply (cond_pos alpha). @@ -548,7 +548,7 @@ Qed. Lemma derivable_pt_lim_opp : forall f (x l:R), derivable_pt_lim f x l -> derivable_pt_lim (- f) x (- l). -Proof. +Proof. intros. apply uniqueness_step3. assert (H1 := uniqueness_step2 _ _ _ H). @@ -1066,7 +1066,7 @@ Qed. Lemma pr_nu : forall f (x:R) (pr1 pr2:derivable_pt f x), - derive_pt f x pr1 = derive_pt f x pr2. + derive_pt f x pr1 = derive_pt f x pr2. Proof. intros. unfold derivable_pt in pr1. @@ -1141,7 +1141,7 @@ Proof. - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2))) (l / 2) H19); - repeat rewrite <- Rplus_assoc; rewrite Rplus_opp_l; + repeat rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l; replace (- l + l / 2) with (- (l / 2)). intro; generalize @@ -1168,7 +1168,7 @@ Proof. Rge_le ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) 0 r). - elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H20 H18)). + elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H20 H18)). assumption. rewrite <- Ropp_0; replace @@ -1260,7 +1260,7 @@ Proof. prove_sup0. rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym. rewrite Rmult_1_l. - replace (2 * delta) with (delta + delta). + replace (2 * delta) with (delta + delta). pattern delta at 2 in |- *; rewrite <- (Rplus_0_r delta); apply Rplus_lt_compat_l. rewrite Rplus_0_r; apply (cond_pos delta). @@ -1270,7 +1270,7 @@ Proof. intro; generalize (Rmin_stable_in_posreal (mkposreal (delta / 2) H9) - (mkposreal ((b - c) / 2) H8)); simpl in |- *; + (mkposreal ((b - c) / 2) H8)); simpl in |- *; intro; red in |- *; intro; rewrite H11 in H10; elim (Rlt_irrefl 0 H10). unfold Rdiv in |- *; apply Rmult_lt_0_compat; [ apply (cond_pos delta) | apply Rinv_0_lt_compat; prove_sup0 ]. @@ -1307,7 +1307,7 @@ Proof. cut (Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / - Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < + Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)). unfold Rabs in |- *; case @@ -1332,7 +1332,7 @@ Proof. generalize (Rlt_trans ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / - Rmax (- (delta / 2)) ((a + - c) / 2)) (l / 2) 0 H22 H21); + Rmax (- (delta / 2)) ((a + - c) / 2)) (l / 2) 0 H22 H21); intro; elim (Rlt_irrefl 0 @@ -1369,7 +1369,7 @@ Proof. reflexivity. unfold Rdiv in H11; assumption. generalize (Rplus_lt_compat_l c (Rmax (- (delta / 2)) ((a - c) / 2)) 0 H10); - rewrite Rplus_0_r; intro; apply Rlt_trans with c; + rewrite Rplus_0_r; intro; apply Rlt_trans with c; assumption. generalize (RmaxLess2 (- (delta / 2)) ((a - c) / 2)); intro; generalize @@ -1390,21 +1390,21 @@ Proof. generalize (Rge_le (delta / 2) (- Rmax (- (delta / 2)) ((a - c) / 2)) H13); intro; apply Rle_lt_trans with (delta / 2). assumption. - apply Rmult_lt_reg_l with 2. + apply Rmult_lt_reg_l with 2. prove_sup0. unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym. rewrite Rmult_1_l; rewrite double. pattern delta at 2 in |- *; rewrite <- (Rplus_0_r delta); apply Rplus_lt_compat_l; rewrite Rplus_0_r; apply (cond_pos delta). - discrR. + discrR. cut (- (delta / 2) < 0). cut ((a - c) / 2 < 0). intros; generalize (Rmax_stable_in_negreal (mknegreal (- (delta / 2)) H13) - (mknegreal ((a - c) / 2) H12)); simpl in |- *; - intro; generalize (Rge_le (Rmax (- (delta / 2)) ((a - c) / 2)) 0 r); + (mknegreal ((a - c) / 2) H12)); simpl in |- *; + intro; generalize (Rge_le (Rmax (- (delta / 2)) ((a - c) / 2)) 0 r); intro; elim (Rlt_irrefl 0 @@ -1413,7 +1413,7 @@ Proof. apply Ropp_lt_gt_contravar; replace (- ((a - c) / 2)) with ((c - a) / 2). assumption. unfold Rdiv in |- *. - rewrite <- Ropp_mult_distr_l_reverse. + rewrite <- Ropp_mult_distr_l_reverse. rewrite (Ropp_minus_distr a c). reflexivity. rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; unfold Rdiv in |- *; @@ -1435,7 +1435,7 @@ Proof. apply Ropp_lt_gt_contravar; replace (- ((a - c) / 2)) with ((c - a) / 2). assumption. unfold Rdiv in |- *. - rewrite <- Ropp_mult_distr_l_reverse. + rewrite <- Ropp_mult_distr_l_reverse. rewrite (Ropp_minus_distr a c). reflexivity. unfold Rdiv in |- *; apply Rmult_lt_0_compat; @@ -1532,7 +1532,7 @@ Proof. generalize (Rplus_le_compat_l (- f x) (f x) (f (x + delta * / 2)) H12); rewrite Rplus_opp_l; rewrite Rplus_comm; intro; assumption. pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l; - left; assumption. + left; assumption. left; apply Rinv_0_lt_compat; assumption. split. unfold Rdiv in |- *; apply prod_neq_R0. |