summaryrefslogtreecommitdiff
path: root/theories/Reals/Ranalysis1.v
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2010-07-21 09:46:51 +0200
committerGravatar Stephane Glondu <steph@glondu.net>2010-07-21 09:46:51 +0200
commit5b7eafd0f00a16d78f99a27f5c7d5a0de77dc7e6 (patch)
tree631ad791a7685edafeb1fb2e8faeedc8379318ae /theories/Reals/Ranalysis1.v
parentda178a880e3ace820b41d38b191d3785b82991f5 (diff)
Imported Upstream snapshot 8.3~beta0+13298
Diffstat (limited to 'theories/Reals/Ranalysis1.v')
-rw-r--r--theories/Reals/Ranalysis1.v56
1 files changed, 28 insertions, 28 deletions
diff --git a/theories/Reals/Ranalysis1.v b/theories/Reals/Ranalysis1.v
index 9414f7c9..1516b338 100644
--- a/theories/Reals/Ranalysis1.v
+++ b/theories/Reals/Ranalysis1.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Ranalysis1.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
+(*i $Id$ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -61,7 +61,7 @@ Definition strict_increasing f : Prop := forall x y:R, x < y -> f x < f y.
Definition strict_decreasing f : Prop := forall x y:R, x < y -> f y < f x.
Definition constant f : Prop := forall x y:R, f x = f y.
-(**********)
+(**********)
Definition no_cond (x:R) : Prop := True.
(**********)
@@ -114,7 +114,7 @@ Qed.
Lemma continuity_pt_const : forall f (x0:R), constant f -> continuity_pt f x0.
Proof.
unfold constant, continuity_pt in |- *; unfold continue_in in |- *;
- unfold limit1_in in |- *; unfold limit_in in |- *;
+ unfold limit1_in in |- *; unfold limit_in in |- *;
intros; exists 1; split;
[ apply Rlt_0_1
| intros; generalize (H x x0); intro; rewrite H2; simpl in |- *;
@@ -196,7 +196,7 @@ Proof.
elim H5; intros; assumption.
Qed.
-(**********)
+(**********)
Lemma continuity_plus :
forall f1 f2, continuity f1 -> continuity f2 -> continuity (f1 + f2).
Proof.
@@ -322,18 +322,18 @@ Proof.
prove_sup0.
rewrite (Rmult_comm 2); rewrite Rmult_assoc; rewrite <- Rinv_l_sym;
[ idtac | discrR ]; rewrite Rmult_1_r; rewrite double;
- pattern alp at 1 in |- *; replace alp with (alp + 0);
+ pattern alp at 1 in |- *; replace alp with (alp + 0);
[ idtac | ring ]; apply Rplus_lt_compat_l; assumption.
symmetry in |- *; apply Rabs_right; left; assumption.
symmetry in |- *; apply Rabs_right; left; change (0 < / 2) in |- *;
- apply Rinv_0_lt_compat; prove_sup0.
+ apply Rinv_0_lt_compat; prove_sup0.
Qed.
Lemma uniqueness_step2 :
forall f (x l:R),
derivable_pt_lim f x l ->
limit1_in (fun h:R => (f (x + h) - f x) / h) (fun h:R => h <> 0) l 0.
-Proof.
+Proof.
unfold derivable_pt_lim in |- *; intros; unfold limit1_in in |- *;
unfold limit_in in |- *; intros.
assert (H1 := H eps H0).
@@ -418,10 +418,10 @@ Proof.
intros; split.
unfold D_in in |- *; unfold limit1_in in |- *; unfold limit_in in |- *;
simpl in |- *; unfold R_dist in |- *; intros.
- apply derive_pt_eq_0.
+ apply derive_pt_eq_0.
unfold derivable_pt_lim in |- *.
intros; elim (H eps H0); intros alpha H1; elim H1; intros;
- exists (mkposreal alpha H2); intros; generalize (H3 (x + h));
+ exists (mkposreal alpha H2); intros; generalize (H3 (x + h));
intro; cut (x + h - x = h);
[ intro; cut (D_x no_cond x (x + h) /\ Rabs (x + h - x) < alpha);
[ intro; generalize (H6 H8); rewrite H7; intro; assumption
@@ -434,7 +434,7 @@ Proof.
intro.
assert (H0 := derive_pt_eq_1 f x (df x) pr H).
unfold D_in in |- *; unfold limit1_in in |- *; unfold limit_in in |- *;
- unfold dist in |- *; simpl in |- *; unfold R_dist in |- *;
+ unfold dist in |- *; simpl in |- *; unfold R_dist in |- *;
intros.
elim (H0 eps H1); intros alpha H2; exists (pos alpha); split.
apply (cond_pos alpha).
@@ -454,7 +454,7 @@ Proof.
simpl in |- *; unfold R_dist in |- *; intros.
unfold derivable_pt_lim in |- *.
intros; elim (H eps H0); intros alpha H1; elim H1; intros;
- exists (mkposreal alpha H2); intros; generalize (H3 (x + h));
+ exists (mkposreal alpha H2); intros; generalize (H3 (x + h));
intro; cut (x + h - x = h);
[ intro; cut (D_x no_cond x (x + h) /\ Rabs (x + h - x) < alpha);
[ intro; generalize (H6 H8); rewrite H7; intro; assumption
@@ -467,7 +467,7 @@ Proof.
intro.
unfold derivable_pt_lim in H.
unfold D_in in |- *; unfold limit1_in in |- *; unfold limit_in in |- *;
- unfold dist in |- *; simpl in |- *; unfold R_dist in |- *;
+ unfold dist in |- *; simpl in |- *; unfold R_dist in |- *;
intros.
elim (H eps H0); intros alpha H2; exists (pos alpha); split.
apply (cond_pos alpha).
@@ -548,7 +548,7 @@ Qed.
Lemma derivable_pt_lim_opp :
forall f (x l:R), derivable_pt_lim f x l -> derivable_pt_lim (- f) x (- l).
-Proof.
+Proof.
intros.
apply uniqueness_step3.
assert (H1 := uniqueness_step2 _ _ _ H).
@@ -1066,7 +1066,7 @@ Qed.
Lemma pr_nu :
forall f (x:R) (pr1 pr2:derivable_pt f x),
- derive_pt f x pr1 = derive_pt f x pr2.
+ derive_pt f x pr1 = derive_pt f x pr2.
Proof.
intros.
unfold derivable_pt in pr1.
@@ -1141,7 +1141,7 @@ Proof.
-
((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) /
Rmin (delta / 2) ((b + - c) / 2))) (l / 2) H19);
- repeat rewrite <- Rplus_assoc; rewrite Rplus_opp_l;
+ repeat rewrite <- Rplus_assoc; rewrite Rplus_opp_l;
rewrite Rplus_0_l; replace (- l + l / 2) with (- (l / 2)).
intro;
generalize
@@ -1168,7 +1168,7 @@ Proof.
Rge_le
((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) /
Rmin (delta / 2) ((b + - c) / 2) + - l) 0 r).
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H20 H18)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H20 H18)).
assumption.
rewrite <- Ropp_0;
replace
@@ -1260,7 +1260,7 @@ Proof.
prove_sup0.
rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym.
rewrite Rmult_1_l.
- replace (2 * delta) with (delta + delta).
+ replace (2 * delta) with (delta + delta).
pattern delta at 2 in |- *; rewrite <- (Rplus_0_r delta);
apply Rplus_lt_compat_l.
rewrite Rplus_0_r; apply (cond_pos delta).
@@ -1270,7 +1270,7 @@ Proof.
intro;
generalize
(Rmin_stable_in_posreal (mkposreal (delta / 2) H9)
- (mkposreal ((b - c) / 2) H8)); simpl in |- *;
+ (mkposreal ((b - c) / 2) H8)); simpl in |- *;
intro; red in |- *; intro; rewrite H11 in H10; elim (Rlt_irrefl 0 H10).
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
[ apply (cond_pos delta) | apply Rinv_0_lt_compat; prove_sup0 ].
@@ -1307,7 +1307,7 @@ Proof.
cut
(Rabs
((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) /
- Rmax (- (delta / 2)) ((a + - c) / 2) + - l) <
+ Rmax (- (delta / 2)) ((a + - c) / 2) + - l) <
- (l / 2)).
unfold Rabs in |- *;
case
@@ -1332,7 +1332,7 @@ Proof.
generalize
(Rlt_trans
((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) /
- Rmax (- (delta / 2)) ((a + - c) / 2)) (l / 2) 0 H22 H21);
+ Rmax (- (delta / 2)) ((a + - c) / 2)) (l / 2) 0 H22 H21);
intro;
elim
(Rlt_irrefl 0
@@ -1369,7 +1369,7 @@ Proof.
reflexivity.
unfold Rdiv in H11; assumption.
generalize (Rplus_lt_compat_l c (Rmax (- (delta / 2)) ((a - c) / 2)) 0 H10);
- rewrite Rplus_0_r; intro; apply Rlt_trans with c;
+ rewrite Rplus_0_r; intro; apply Rlt_trans with c;
assumption.
generalize (RmaxLess2 (- (delta / 2)) ((a - c) / 2)); intro;
generalize
@@ -1390,21 +1390,21 @@ Proof.
generalize (Rge_le (delta / 2) (- Rmax (- (delta / 2)) ((a - c) / 2)) H13);
intro; apply Rle_lt_trans with (delta / 2).
assumption.
- apply Rmult_lt_reg_l with 2.
+ apply Rmult_lt_reg_l with 2.
prove_sup0.
unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym.
rewrite Rmult_1_l; rewrite double.
pattern delta at 2 in |- *; rewrite <- (Rplus_0_r delta);
apply Rplus_lt_compat_l; rewrite Rplus_0_r; apply (cond_pos delta).
- discrR.
+ discrR.
cut (- (delta / 2) < 0).
cut ((a - c) / 2 < 0).
intros;
generalize
(Rmax_stable_in_negreal (mknegreal (- (delta / 2)) H13)
- (mknegreal ((a - c) / 2) H12)); simpl in |- *;
- intro; generalize (Rge_le (Rmax (- (delta / 2)) ((a - c) / 2)) 0 r);
+ (mknegreal ((a - c) / 2) H12)); simpl in |- *;
+ intro; generalize (Rge_le (Rmax (- (delta / 2)) ((a - c) / 2)) 0 r);
intro;
elim
(Rlt_irrefl 0
@@ -1413,7 +1413,7 @@ Proof.
apply Ropp_lt_gt_contravar; replace (- ((a - c) / 2)) with ((c - a) / 2).
assumption.
unfold Rdiv in |- *.
- rewrite <- Ropp_mult_distr_l_reverse.
+ rewrite <- Ropp_mult_distr_l_reverse.
rewrite (Ropp_minus_distr a c).
reflexivity.
rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; unfold Rdiv in |- *;
@@ -1435,7 +1435,7 @@ Proof.
apply Ropp_lt_gt_contravar; replace (- ((a - c) / 2)) with ((c - a) / 2).
assumption.
unfold Rdiv in |- *.
- rewrite <- Ropp_mult_distr_l_reverse.
+ rewrite <- Ropp_mult_distr_l_reverse.
rewrite (Ropp_minus_distr a c).
reflexivity.
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
@@ -1532,7 +1532,7 @@ Proof.
generalize (Rplus_le_compat_l (- f x) (f x) (f (x + delta * / 2)) H12);
rewrite Rplus_opp_l; rewrite Rplus_comm; intro; assumption.
pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l;
- left; assumption.
+ left; assumption.
left; apply Rinv_0_lt_compat; assumption.
split.
unfold Rdiv in |- *; apply prod_neq_R0.