summaryrefslogtreecommitdiff
path: root/theories/Reals/Ranalysis1.v
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <smimram@debian.org>2006-04-28 14:59:16 +0000
committerGravatar Samuel Mimram <smimram@debian.org>2006-04-28 14:59:16 +0000
commit3ef7797ef6fc605dfafb32523261fe1b023aeecb (patch)
treead89c6bb57ceee608fcba2bb3435b74e0f57919e /theories/Reals/Ranalysis1.v
parent018ee3b0c2be79eb81b1f65c3f3fa142d24129c8 (diff)
Imported Upstream version 8.0pl3+8.1alphaupstream/8.0pl3+8.1alpha
Diffstat (limited to 'theories/Reals/Ranalysis1.v')
-rw-r--r--theories/Reals/Ranalysis1.v30
1 files changed, 15 insertions, 15 deletions
diff --git a/theories/Reals/Ranalysis1.v b/theories/Reals/Ranalysis1.v
index 918ebfc0..6d30e291 100644
--- a/theories/Reals/Ranalysis1.v
+++ b/theories/Reals/Ranalysis1.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Ranalysis1.v,v 1.21.2.1 2004/07/16 19:31:12 herbelin Exp $ i*)
+(*i $Id: Ranalysis1.v 8670 2006-03-28 22:16:14Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -453,7 +453,7 @@ Qed.
Theorem derivable_continuous_pt :
forall f (x:R), derivable_pt f x -> continuity_pt f x.
-intros.
+intros f x X.
generalize (derivable_derive f x X); intro.
elim H; intros l H1.
cut (l = fct_cte l x).
@@ -468,7 +468,7 @@ unfold fct_cte in |- *; reflexivity.
Qed.
Theorem derivable_continuous : forall f, derivable f -> continuity f.
-unfold derivable, continuity in |- *; intros.
+unfold derivable, continuity in |- *; intros f X x.
apply (derivable_continuous_pt f x (X x)).
Qed.
@@ -661,7 +661,7 @@ Qed.
Lemma derivable_pt_plus :
forall f1 f2 (x:R),
derivable_pt f1 x -> derivable_pt f2 x -> derivable_pt (f1 + f2) x.
-unfold derivable_pt in |- *; intros.
+unfold derivable_pt in |- *; intros f1 f2 x X X0.
elim X; intros.
elim X0; intros.
apply existT with (x0 + x1).
@@ -670,7 +670,7 @@ Qed.
Lemma derivable_pt_opp :
forall f (x:R), derivable_pt f x -> derivable_pt (- f) x.
-unfold derivable_pt in |- *; intros.
+unfold derivable_pt in |- *; intros f x X.
elim X; intros.
apply existT with (- x0).
apply derivable_pt_lim_opp; assumption.
@@ -679,7 +679,7 @@ Qed.
Lemma derivable_pt_minus :
forall f1 f2 (x:R),
derivable_pt f1 x -> derivable_pt f2 x -> derivable_pt (f1 - f2) x.
-unfold derivable_pt in |- *; intros.
+unfold derivable_pt in |- *; intros f1 f2 x X X0.
elim X; intros.
elim X0; intros.
apply existT with (x0 - x1).
@@ -689,7 +689,7 @@ Qed.
Lemma derivable_pt_mult :
forall f1 f2 (x:R),
derivable_pt f1 x -> derivable_pt f2 x -> derivable_pt (f1 * f2) x.
-unfold derivable_pt in |- *; intros.
+unfold derivable_pt in |- *; intros f1 f2 x X X0.
elim X; intros.
elim X0; intros.
apply existT with (x0 * f2 x + f1 x * x1).
@@ -704,7 +704,7 @@ Qed.
Lemma derivable_pt_scal :
forall f (a x:R), derivable_pt f x -> derivable_pt (mult_real_fct a f) x.
-unfold derivable_pt in |- *; intros.
+unfold derivable_pt in |- *; intros f1 a x X.
elim X; intros.
apply existT with (a * x0).
apply derivable_pt_lim_scal; assumption.
@@ -724,7 +724,7 @@ Qed.
Lemma derivable_pt_comp :
forall f1 f2 (x:R),
derivable_pt f1 x -> derivable_pt f2 (f1 x) -> derivable_pt (f2 o f1) x.
-unfold derivable_pt in |- *; intros.
+unfold derivable_pt in |- *; intros f1 f2 x X X0.
elim X; intros.
elim X0; intros.
apply existT with (x1 * x0).
@@ -733,24 +733,24 @@ Qed.
Lemma derivable_plus :
forall f1 f2, derivable f1 -> derivable f2 -> derivable (f1 + f2).
-unfold derivable in |- *; intros.
+unfold derivable in |- *; intros f1 f2 X X0 x.
apply (derivable_pt_plus _ _ x (X _) (X0 _)).
Qed.
Lemma derivable_opp : forall f, derivable f -> derivable (- f).
-unfold derivable in |- *; intros.
+unfold derivable in |- *; intros f X x.
apply (derivable_pt_opp _ x (X _)).
Qed.
Lemma derivable_minus :
forall f1 f2, derivable f1 -> derivable f2 -> derivable (f1 - f2).
-unfold derivable in |- *; intros.
+unfold derivable in |- *; intros f1 f2 X X0 x.
apply (derivable_pt_minus _ _ x (X _) (X0 _)).
Qed.
Lemma derivable_mult :
forall f1 f2, derivable f1 -> derivable f2 -> derivable (f1 * f2).
-unfold derivable in |- *; intros.
+unfold derivable in |- *; intros f1 f2 X X0 x.
apply (derivable_pt_mult _ _ x (X _) (X0 _)).
Qed.
@@ -761,7 +761,7 @@ Qed.
Lemma derivable_scal :
forall f (a:R), derivable f -> derivable (mult_real_fct a f).
-unfold derivable in |- *; intros.
+unfold derivable in |- *; intros f a X x.
apply (derivable_pt_scal _ a x (X _)).
Qed.
@@ -775,7 +775,7 @@ Qed.
Lemma derivable_comp :
forall f1 f2, derivable f1 -> derivable f2 -> derivable (f2 o f1).
-unfold derivable in |- *; intros.
+unfold derivable in |- *; intros f1 f2 X X0 x.
apply (derivable_pt_comp _ _ x (X _) (X0 _)).
Qed.