diff options
author | Stephane Glondu <steph@glondu.net> | 2010-07-21 09:46:51 +0200 |
---|---|---|
committer | Stephane Glondu <steph@glondu.net> | 2010-07-21 09:46:51 +0200 |
commit | 5b7eafd0f00a16d78f99a27f5c7d5a0de77dc7e6 (patch) | |
tree | 631ad791a7685edafeb1fb2e8faeedc8379318ae /theories/Reals/R_sqrt.v | |
parent | da178a880e3ace820b41d38b191d3785b82991f5 (diff) |
Imported Upstream snapshot 8.3~beta0+13298
Diffstat (limited to 'theories/Reals/R_sqrt.v')
-rw-r--r-- | theories/Reals/R_sqrt.v | 214 |
1 files changed, 155 insertions, 59 deletions
diff --git a/theories/Reals/R_sqrt.v b/theories/Reals/R_sqrt.v index 63b8940b..2c43ee9b 100644 --- a/theories/Reals/R_sqrt.v +++ b/theories/Reals/R_sqrt.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: R_sqrt.v 10710 2008-03-23 09:24:09Z herbelin $ i*) +(*i $Id$ i*) Require Import Rbase. Require Import Rfunctions. @@ -20,15 +20,21 @@ Definition sqrt (x:R) : R := | right a => Rsqrt (mknonnegreal x (Rge_le _ _ a)) end. -Lemma sqrt_positivity : forall x:R, 0 <= x -> 0 <= sqrt x. +Lemma sqrt_pos : forall x : R, 0 <= sqrt x. Proof. - intros. - unfold sqrt in |- *. - case (Rcase_abs x); intro. - elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ r H)). + intros x. + unfold sqrt. + destruct (Rcase_abs x) as [H|H]. + apply Rle_refl. apply Rsqrt_positivity. Qed. +Lemma sqrt_positivity : forall x:R, 0 <= x -> 0 <= sqrt x. +Proof. + intros x _. + apply sqrt_pos. +Qed. + Lemma sqrt_sqrt : forall x:R, 0 <= x -> sqrt x * sqrt x = x. Proof. intros. @@ -40,7 +46,7 @@ Qed. Lemma sqrt_0 : sqrt 0 = 0. Proof. - apply Rsqr_eq_0; unfold Rsqr in |- *; apply sqrt_sqrt; right; reflexivity. + apply Rsqr_eq_0; unfold Rsqr in |- *; apply sqrt_sqrt; right; reflexivity. Qed. Lemma sqrt_1 : sqrt 1 = 1. @@ -48,7 +54,7 @@ Proof. apply (Rsqr_inj (sqrt 1) 1); [ apply sqrt_positivity; left | left - | unfold Rsqr in |- *; rewrite sqrt_sqrt; [ ring | left ] ]; + | unfold Rsqr in |- *; rewrite sqrt_sqrt; [ ring | left ] ]; apply Rlt_0_1. Qed. @@ -100,17 +106,41 @@ Proof. intros x H1; unfold Rsqr in |- *; apply (sqrt_sqrt x H1). Qed. +Lemma sqrt_mult_alt : + forall x y : R, 0 <= x -> sqrt (x * y) = sqrt x * sqrt y. +Proof. + intros x y Hx. + unfold sqrt at 3. + destruct (Rcase_abs y) as [Hy|Hy]. + rewrite Rmult_0_r. + destruct Hx as [Hx'|Hx']. + unfold sqrt. + destruct (Rcase_abs (x * y)) as [Hxy|Hxy]. + apply eq_refl. + elim Rge_not_lt with (1 := Hxy). + rewrite <- (Rmult_0_r x). + now apply Rmult_lt_compat_l. + rewrite <- Hx', Rmult_0_l. + exact sqrt_0. + apply Rsqr_inj. + apply sqrt_pos. + apply Rmult_le_pos. + apply sqrt_pos. + apply Rsqrt_positivity. + rewrite Rsqr_mult, 2!Rsqr_sqrt. + unfold Rsqr. + now rewrite Rsqrt_Rsqrt. + exact Hx. + apply Rmult_le_pos. + exact Hx. + now apply Rge_le. +Qed. + Lemma sqrt_mult : forall x y:R, 0 <= x -> 0 <= y -> sqrt (x * y) = sqrt x * sqrt y. Proof. - intros x y H1 H2; - apply - (Rsqr_inj (sqrt (x * y)) (sqrt x * sqrt y) - (sqrt_positivity (x * y) (Rmult_le_pos x y H1 H2)) - (Rmult_le_pos (sqrt x) (sqrt y) (sqrt_positivity x H1) - (sqrt_positivity y H2))); rewrite Rsqr_mult; - repeat rewrite Rsqr_sqrt; - [ ring | assumption | assumption | apply (Rmult_le_pos x y H1 H2) ]. + intros x y Hx _. + now apply sqrt_mult_alt. Qed. Lemma sqrt_lt_R0 : forall x:R, 0 < x -> 0 < sqrt x. @@ -121,46 +151,90 @@ Proof. | apply (sqrt_positivity x (Rlt_le 0 x H1)) ]. Qed. +Lemma sqrt_div_alt : + forall x y : R, 0 < y -> sqrt (x / y) = sqrt x / sqrt y. +Proof. + intros x y Hy. + unfold sqrt at 2. + destruct (Rcase_abs x) as [Hx|Hx]. + unfold Rdiv. + rewrite Rmult_0_l. + unfold sqrt. + destruct (Rcase_abs (x * / y)) as [Hxy|Hxy]. + apply eq_refl. + elim Rge_not_lt with (1 := Hxy). + apply Rmult_lt_reg_r with y. + exact Hy. + rewrite Rmult_assoc, Rinv_l, Rmult_1_r, Rmult_0_l. + exact Hx. + now apply Rgt_not_eq. + set (Hx' := Rge_le x 0 Hx). + clearbody Hx'. clear Hx. + apply Rsqr_inj. + apply sqrt_pos. + apply Fourier_util.Rle_mult_inv_pos. + apply Rsqrt_positivity. + now apply sqrt_lt_R0. + rewrite Rsqr_div, 2!Rsqr_sqrt. + unfold Rsqr. + now rewrite Rsqrt_Rsqrt. + now apply Rlt_le. + now apply Fourier_util.Rle_mult_inv_pos. + apply Rgt_not_eq. + now apply sqrt_lt_R0. +Qed. + Lemma sqrt_div : forall x y:R, 0 <= x -> 0 < y -> sqrt (x / y) = sqrt x / sqrt y. Proof. - intros x y H1 H2; apply Rsqr_inj; - [ apply sqrt_positivity; apply (Rmult_le_pos x (/ y)); - [ assumption - | generalize (Rinv_0_lt_compat y H2); clear H2; intro H2; left; - assumption ] - | apply (Rmult_le_pos (sqrt x) (/ sqrt y)); - [ apply (sqrt_positivity x H1) - | generalize (sqrt_lt_R0 y H2); clear H2; intro H2; - generalize (Rinv_0_lt_compat (sqrt y) H2); clear H2; - intro H2; left; assumption ] - | rewrite Rsqr_div; repeat rewrite Rsqr_sqrt; - [ reflexivity - | left; assumption - | assumption - | generalize (Rinv_0_lt_compat y H2); intro H3; - generalize (Rlt_le 0 (/ y) H3); intro H4; - apply (Rmult_le_pos x (/ y) H1 H4) - | red in |- *; intro H3; generalize (Rlt_le 0 y H2); intro H4; - generalize (sqrt_eq_0 y H4 H3); intro H5; rewrite H5 in H2; - elim (Rlt_irrefl 0 H2) ] ]. + intros x y _ H. + now apply sqrt_div_alt. +Qed. + +Lemma sqrt_lt_0_alt : + forall x y : R, sqrt x < sqrt y -> x < y. +Proof. + intros x y. + unfold sqrt at 2. + destruct (Rcase_abs y) as [Hy|Hy]. + intros Hx. + elim Rlt_not_le with (1 := Hx). + apply sqrt_pos. + set (Hy' := Rge_le y 0 Hy). + clearbody Hy'. clear Hy. + unfold sqrt. + destruct (Rcase_abs x) as [Hx|Hx]. + intros _. + now apply Rlt_le_trans with R0. + intros Hxy. + apply Rsqr_incrst_1 in Hxy ; try apply Rsqrt_positivity. + unfold Rsqr in Hxy. + now rewrite 2!Rsqrt_Rsqrt in Hxy. Qed. Lemma sqrt_lt_0 : forall x y:R, 0 <= x -> 0 <= y -> sqrt x < sqrt y -> x < y. Proof. - intros x y H1 H2 H3; - generalize - (Rsqr_incrst_1 (sqrt x) (sqrt y) H3 (sqrt_positivity x H1) - (sqrt_positivity y H2)); intro H4; rewrite (Rsqr_sqrt x H1) in H4; - rewrite (Rsqr_sqrt y H2) in H4; assumption. + intros x y _ _. + apply sqrt_lt_0_alt. +Qed. + +Lemma sqrt_lt_1_alt : + forall x y : R, 0 <= x < y -> sqrt x < sqrt y. +Proof. + intros x y (Hx, Hxy). + apply Rsqr_incrst_0 ; try apply sqrt_pos. + rewrite 2!Rsqr_sqrt. + exact Hxy. + apply Rlt_le. + now apply Rle_lt_trans with x. + exact Hx. Qed. Lemma sqrt_lt_1 : forall x y:R, 0 <= x -> 0 <= y -> x < y -> sqrt x < sqrt y. Proof. - intros x y H1 H2 H3; apply Rsqr_incrst_0; - [ rewrite (Rsqr_sqrt x H1); rewrite (Rsqr_sqrt y H2); assumption - | apply (sqrt_positivity x H1) - | apply (sqrt_positivity y H2) ]. + intros x y Hx _ Hxy. + apply sqrt_lt_1_alt. + now split. Qed. Lemma sqrt_le_0 : @@ -173,13 +247,27 @@ Proof. rewrite (Rsqr_sqrt y H2) in H4; assumption. Qed. +Lemma sqrt_le_1_alt : + forall x y : R, x <= y -> sqrt x <= sqrt y. +Proof. + intros x y [Hxy|Hxy]. + destruct (Rle_or_lt 0 x) as [Hx|Hx]. + apply Rlt_le. + apply sqrt_lt_1_alt. + now split. + unfold sqrt at 1. + destruct (Rcase_abs x) as [Hx'|Hx']. + apply sqrt_pos. + now elim Rge_not_lt with (1 := Hx'). + rewrite Hxy. + apply Rle_refl. +Qed. + Lemma sqrt_le_1 : forall x y:R, 0 <= x -> 0 <= y -> x <= y -> sqrt x <= sqrt y. Proof. - intros x y H1 H2 H3; apply Rsqr_incr_0; - [ rewrite (Rsqr_sqrt x H1); rewrite (Rsqr_sqrt y H2); assumption - | apply (sqrt_positivity x H1) - | apply (sqrt_positivity y H2) ]. + intros x y _ _ Hxy. + now apply sqrt_le_1_alt. Qed. Lemma sqrt_inj : forall x y:R, 0 <= x -> 0 <= y -> sqrt x = sqrt y -> x = y. @@ -190,22 +278,30 @@ Proof. rewrite H1; reflexivity. Qed. +Lemma sqrt_less_alt : + forall x : R, 1 < x -> sqrt x < x. +Proof. + intros x Hx. + assert (Hx1 := Rle_lt_trans _ _ _ Rle_0_1 Hx). + assert (Hx2 := Rlt_le _ _ Hx1). + apply Rsqr_incrst_0 ; trivial. + rewrite Rsqr_sqrt ; trivial. + rewrite <- (Rmult_1_l x) at 1. + now apply Rmult_lt_compat_r. + apply sqrt_pos. +Qed. + Lemma sqrt_less : forall x:R, 0 <= x -> 1 < x -> sqrt x < x. Proof. - intros x H1 H2; generalize (sqrt_lt_1 1 x (Rlt_le 0 1 Rlt_0_1) H1 H2); - intro H3; rewrite sqrt_1 in H3; generalize (Rmult_ne (sqrt x)); - intro H4; elim H4; intros H5 H6; rewrite <- H5; pattern x at 2 in |- *; - rewrite <- (sqrt_def x H1); - apply - (Rmult_lt_compat_l (sqrt x) 1 (sqrt x) - (sqrt_lt_R0 x (Rlt_trans 0 1 x Rlt_0_1 H2)) H3). + intros x _. + apply sqrt_less_alt. Qed. Lemma sqrt_more : forall x:R, 0 < x -> x < 1 -> x < sqrt x. Proof. intros x H1 H2; - generalize (sqrt_lt_1 x 1 (Rlt_le 0 x H1) (Rlt_le 0 1 Rlt_0_1) H2); - intro H3; rewrite sqrt_1 in H3; generalize (Rmult_ne (sqrt x)); + generalize (sqrt_lt_1 x 1 (Rlt_le 0 x H1) (Rlt_le 0 1 Rlt_0_1) H2); + intro H3; rewrite sqrt_1 in H3; generalize (Rmult_ne (sqrt x)); intro H4; elim H4; intros H5 H6; rewrite <- H5; pattern x at 1 in |- *; rewrite <- (sqrt_def x (Rlt_le 0 x H1)); apply (Rmult_lt_compat_l (sqrt x) (sqrt x) 1 (sqrt_lt_R0 x H1) H3). @@ -338,7 +434,7 @@ Proof. (b * (- b * (/ 2 * / a)) + c). repeat rewrite <- Rplus_assoc; replace (b * b + b * b) with (2 * (b * b)). rewrite Rmult_plus_distr_r; repeat rewrite Rmult_assoc; - rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc; + rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Ropp_mult_distr_l_reverse; repeat rewrite Rmult_assoc. rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym. |