diff options
author | Enrico Tassi <gareuselesinge@debian.org> | 2015-07-15 10:36:12 +0200 |
---|---|---|
committer | Enrico Tassi <gareuselesinge@debian.org> | 2015-07-15 10:36:12 +0200 |
commit | 0aa2544d04dbd4b6ee665b551ed165e4fb02d2fa (patch) | |
tree | 12e8931a4a56da1a1bdfb89d670f4ba38fe08e1f /theories/Reals/PSeries_reg.v | |
parent | cec4741afacd2e80894232850eaf9f9c0e45d6d7 (diff) |
Imported Upstream version 8.5~beta2+dfsgupstream/8.5_beta2+dfsg
Diffstat (limited to 'theories/Reals/PSeries_reg.v')
-rw-r--r-- | theories/Reals/PSeries_reg.v | 6 |
1 files changed, 6 insertions, 0 deletions
diff --git a/theories/Reals/PSeries_reg.v b/theories/Reals/PSeries_reg.v index 30a26f77..94b881cc 100644 --- a/theories/Reals/PSeries_reg.v +++ b/theories/Reals/PSeries_reg.v @@ -24,6 +24,7 @@ Definition Boule (x:R) (r:posreal) (y:R) : Prop := Rabs (y - x) < r. Lemma Boule_convex : forall c d x y z, Boule c d x -> Boule c d y -> x <= z <= y -> Boule c d z. +Proof. intros c d x y z bx b_y intz. unfold Boule in bx, b_y; apply Rabs_def2 in bx; apply Rabs_def2 in b_y; apply Rabs_def1; @@ -33,6 +34,7 @@ Qed. Definition boule_of_interval x y (h : x < y) : {c :R & {r : posreal | c - r = x /\ c + r = y}}. +Proof. exists ((x + y)/2). assert (radius : 0 < (y - x)/2). unfold Rdiv; apply Rmult_lt_0_compat. @@ -71,6 +73,7 @@ Qed. Lemma Ball_in_inter : forall c1 c2 r1 r2 x, Boule c1 r1 x -> Boule c2 r2 x -> {r3 : posreal | forall y, Boule x r3 y -> Boule c1 r1 y /\ Boule c2 r2 y}. +Proof. intros c1 c2 [r1 r1p] [r2 r2p] x; unfold Boule; simpl; intros in1 in2. assert (Rmax (c1 - r1)(c2 - r2) < x). apply Rmax_lub_lt;[revert in1 | revert in2]; intros h; @@ -366,6 +369,7 @@ Qed. (* Uniform convergence implies pointwise simple convergence *) Lemma CVU_cv : forall f g c d, CVU f g c d -> forall x, Boule c d x -> Un_cv (fun n => f n x) (g x). +Proof. intros f g c d cvu x bx eps ep; destruct (cvu eps ep) as [N Pn]. exists N; intros n nN; rewrite R_dist_sym; apply Pn; assumption. Qed. @@ -374,6 +378,7 @@ Qed. Lemma CVU_ext_lim : forall f g1 g2 c d, CVU f g1 c d -> (forall x, Boule c d x -> g1 x = g2 x) -> CVU f g2 c d. +Proof. intros f g1 g2 c d cvu q eps ep; destruct (cvu _ ep) as [N Pn]. exists N; intros; rewrite <- q; auto. Qed. @@ -388,6 +393,7 @@ Lemma CVU_derivable : (forall x, Boule c d x -> Un_cv (fun n => f n x) (g x)) -> (forall n x, Boule c d x -> derivable_pt_lim (f n) x (f' n x)) -> forall x, Boule c d x -> derivable_pt_lim g x (g' x). +Proof. intros f f' g g' c d cvu cvp dff' x bx. set (rho_ := fun n y => |