diff options
author | Samuel Mimram <smimram@debian.org> | 2007-02-13 13:48:12 +0000 |
---|---|---|
committer | Samuel Mimram <smimram@debian.org> | 2007-02-13 13:48:12 +0000 |
commit | 55ce117e8083477593cf1ff2e51a3641c7973830 (patch) | |
tree | a82defb4105f175c71b0d13cae42831ce608c4d6 /theories/Reals/Exp_prop.v | |
parent | 208a0f7bfa5249f9795e6e225f309cbe715c0fad (diff) |
Imported Upstream version 8.1+dfsgupstream/8.1+dfsg
Diffstat (limited to 'theories/Reals/Exp_prop.v')
-rw-r--r-- | theories/Reals/Exp_prop.v | 22 |
1 files changed, 11 insertions, 11 deletions
diff --git a/theories/Reals/Exp_prop.v b/theories/Reals/Exp_prop.v index 5dafec83..beb4b744 100644 --- a/theories/Reals/Exp_prop.v +++ b/theories/Reals/Exp_prop.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Exp_prop.v 9245 2006-10-17 12:53:34Z notin $ i*) +(*i $Id: Exp_prop.v 9551 2007-01-29 15:13:35Z bgregoir $ i*) Require Import Rbase. Require Import Rfunctions. @@ -87,7 +87,7 @@ Proof. reflexivity. replace (2 * S N)%nat with (S (S (2 * N))). simpl in |- *; simpl in HrecN; rewrite HrecN; reflexivity. - ring_nat. + ring. Qed. Lemma div2_S_double : forall N:nat, div2 (S (2 * N)) = N. @@ -96,7 +96,7 @@ Proof. reflexivity. replace (2 * S N)%nat with (S (S (2 * N))). simpl in |- *; simpl in HrecN; rewrite HrecN; reflexivity. - ring_nat. + ring. Qed. Lemma div2_not_R0 : forall N:nat, (1 < N)%nat -> (0 < div2 N)%nat. @@ -367,7 +367,7 @@ Proof. apply le_trans with (pred N). apply H0. apply le_pred_n. - rewrite H4; ring_nat. + rewrite H4; ring. cut (S N = (2 * S N0)%nat). intro. replace (C (S N) (S N0) / INR (fact (S N))) with (/ Rsqr (INR (fact (S N0)))). @@ -388,7 +388,7 @@ Proof. apply INR_fact_neq_0. apply INR_fact_neq_0. apply INR_fact_neq_0. - rewrite H4; ring_nat. + rewrite H4; ring. unfold C, Rdiv in |- *. rewrite (Rmult_comm (INR (fact (S N)))). rewrite Rmult_assoc; rewrite <- Rinv_r_sym. @@ -494,7 +494,7 @@ Proof. simpl in |- *. pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left; apply Rlt_0_1. - ring_nat. + ring. unfold Rsqr in |- *; apply prod_neq_R0; apply INR_fact_neq_0. unfold Rsqr in |- *; apply prod_neq_R0; apply not_O_INR; discriminate. assert (H0 := even_odd_cor N). @@ -515,7 +515,7 @@ Proof. replace (S (S (2 * N0))) with (2 * S N0)%nat. do 2 rewrite div2_double. reflexivity. - ring_nat. + ring. apply S_pred with 0%nat; apply H. Qed. @@ -585,8 +585,8 @@ Proof. apply (fun m n p:nat => mult_le_compat_l p n m). replace (2 * S N1)%nat with (S (S (2 * N1))). apply le_n_Sn. - ring_nat. - ring_nat. + ring. + ring. reflexivity. apply INR_fact_neq_0. apply INR_fact_neq_0. @@ -623,7 +623,7 @@ Proof. replace (2 * N1)%nat with (S (S (2 * pred N1))). reflexivity. pattern N1 at 2 in |- *; replace N1 with (S (pred N1)). - ring_nat. + ring. symmetry in |- *; apply S_pred with 0%nat; apply H8. apply INR_lt. apply Rmult_lt_reg_l with (INR 2). @@ -641,7 +641,7 @@ Proof. rewrite div2_double. replace (2 * S N1)%nat with (S (S (2 * N1))). apply le_n_Sn. - ring_nat. + ring. reflexivity. apply le_trans with (max (2 * S N0) 2). apply le_max_l. |