summaryrefslogtreecommitdiff
path: root/theories/QArith/Qreals.v
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <smimram@debian.org>2006-06-16 14:41:51 +0000
committerGravatar Samuel Mimram <smimram@debian.org>2006-06-16 14:41:51 +0000
commite978da8c41d8a3c19a29036d9c569fbe2a4616b0 (patch)
tree0de2a907ee93c795978f3c843155bee91c11ed60 /theories/QArith/Qreals.v
parent3ef7797ef6fc605dfafb32523261fe1b023aeecb (diff)
Imported Upstream version 8.0pl3+8.1betaupstream/8.0pl3+8.1beta
Diffstat (limited to 'theories/QArith/Qreals.v')
-rw-r--r--theories/QArith/Qreals.v213
1 files changed, 213 insertions, 0 deletions
diff --git a/theories/QArith/Qreals.v b/theories/QArith/Qreals.v
new file mode 100644
index 00000000..5b7480c1
--- /dev/null
+++ b/theories/QArith/Qreals.v
@@ -0,0 +1,213 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Qreals.v 8883 2006-05-31 21:56:37Z letouzey $ i*)
+
+Require Export Rbase.
+Require Export QArith_base.
+
+(** * A field tactic for rational numbers. *)
+
+(** Since field cannot operate on setoid datatypes (yet?),
+ we translate Q goals into reals before applying field. *)
+
+Lemma IZR_nz : forall p : positive, IZR (Zpos p) <> 0%R.
+intros; apply not_O_IZR; auto with qarith.
+Qed.
+
+Hint Immediate IZR_nz.
+Hint Resolve Rmult_integral_contrapositive.
+
+Definition Q2R (x : Q) : R := (IZR (Qnum x) * / IZR (QDen x))%R.
+
+Lemma eqR_Qeq : forall x y : Q, Q2R x = Q2R y -> x==y.
+Proof.
+unfold Qeq, Q2R in |- *; intros (x1, x2) (y1, y2); unfold Qnum, Qden in |- *;
+ intros.
+apply eq_IZR.
+do 2 rewrite mult_IZR.
+set (X1 := IZR x1) in *; assert (X2nz := IZR_nz x2);
+ set (X2 := IZR (Zpos x2)) in *.
+set (Y1 := IZR y1) in *; assert (Y2nz := IZR_nz y2);
+ set (Y2 := IZR (Zpos y2)) in *.
+assert ((X2 * X1 * / X2)%R = (X2 * (Y1 * / Y2))%R).
+rewrite <- H; field; auto.
+rewrite Rinv_r_simpl_m in H0; auto; rewrite H0; field; auto.
+Qed.
+
+Lemma Qeq_eqR : forall x y : Q, x==y -> Q2R x = Q2R y.
+Proof.
+unfold Qeq, Q2R in |- *; intros (x1, x2) (y1, y2); unfold Qnum, Qden in |- *;
+ intros.
+set (X1 := IZR x1) in *; assert (X2nz := IZR_nz x2);
+ set (X2 := IZR (Zpos x2)) in *.
+set (Y1 := IZR y1) in *; assert (Y2nz := IZR_nz y2);
+ set (Y2 := IZR (Zpos y2)) in *.
+assert ((X1 * Y2)%R = (Y1 * X2)%R).
+ unfold X1, X2, Y1, Y2 in |- *; do 2 rewrite <- mult_IZR.
+ apply IZR_eq; auto.
+clear H.
+field; auto.
+rewrite <- H0; field; auto.
+Qed.
+
+Lemma Rle_Qle : forall x y : Q, (Q2R x <= Q2R y)%R -> x<=y.
+Proof.
+unfold Qle, Q2R in |- *; intros (x1, x2) (y1, y2); unfold Qnum, Qden in |- *;
+ intros.
+apply le_IZR.
+do 2 rewrite mult_IZR.
+set (X1 := IZR x1) in *; assert (X2nz := IZR_nz x2);
+ set (X2 := IZR (Zpos x2)) in *.
+set (Y1 := IZR y1) in *; assert (Y2nz := IZR_nz y2);
+ set (Y2 := IZR (Zpos y2)) in *.
+replace (X1 * Y2)%R with (X1 * / X2 * (X2 * Y2))%R; try (field; auto).
+replace (Y1 * X2)%R with (Y1 * / Y2 * (X2 * Y2))%R; try (field; auto).
+apply Rmult_le_compat_r; auto.
+apply Rmult_le_pos.
+unfold X2 in |- *; replace 0%R with (IZR 0); auto; apply IZR_le;
+ auto with zarith.
+unfold Y2 in |- *; replace 0%R with (IZR 0); auto; apply IZR_le;
+ auto with zarith.
+Qed.
+
+Lemma Qle_Rle : forall x y : Q, x<=y -> (Q2R x <= Q2R y)%R.
+Proof.
+unfold Qle, Q2R in |- *; intros (x1, x2) (y1, y2); unfold Qnum, Qden in |- *;
+ intros.
+set (X1 := IZR x1) in *; assert (X2nz := IZR_nz x2);
+ set (X2 := IZR (Zpos x2)) in *.
+set (Y1 := IZR y1) in *; assert (Y2nz := IZR_nz y2);
+ set (Y2 := IZR (Zpos y2)) in *.
+assert (X1 * Y2 <= Y1 * X2)%R.
+ unfold X1, X2, Y1, Y2 in |- *; do 2 rewrite <- mult_IZR.
+ apply IZR_le; auto.
+clear H.
+replace (X1 * / X2)%R with (X1 * Y2 * (/ X2 * / Y2))%R; try (field; auto).
+replace (Y1 * / Y2)%R with (Y1 * X2 * (/ X2 * / Y2))%R; try (field; auto).
+apply Rmult_le_compat_r; auto.
+apply Rmult_le_pos; apply Rlt_le; apply Rinv_0_lt_compat.
+unfold X2 in |- *; replace 0%R with (IZR 0); auto; apply IZR_lt; red in |- *;
+ auto with zarith.
+unfold Y2 in |- *; replace 0%R with (IZR 0); auto; apply IZR_lt; red in |- *;
+ auto with zarith.
+Qed.
+
+Lemma Rlt_Qlt : forall x y : Q, (Q2R x < Q2R y)%R -> x<y.
+Proof.
+unfold Qlt, Q2R in |- *; intros (x1, x2) (y1, y2); unfold Qnum, Qden in |- *;
+ intros.
+apply lt_IZR.
+do 2 rewrite mult_IZR.
+set (X1 := IZR x1) in *; assert (X2nz := IZR_nz x2);
+ set (X2 := IZR (Zpos x2)) in *.
+set (Y1 := IZR y1) in *; assert (Y2nz := IZR_nz y2);
+ set (Y2 := IZR (Zpos y2)) in *.
+replace (X1 * Y2)%R with (X1 * / X2 * (X2 * Y2))%R; try (field; auto).
+replace (Y1 * X2)%R with (Y1 * / Y2 * (X2 * Y2))%R; try (field; auto).
+apply Rmult_lt_compat_r; auto.
+apply Rmult_lt_0_compat.
+unfold X2 in |- *; replace 0%R with (IZR 0); auto; apply IZR_lt; red in |- *;
+ auto with zarith.
+unfold Y2 in |- *; replace 0%R with (IZR 0); auto; apply IZR_lt; red in |- *;
+ auto with zarith.
+Qed.
+
+Lemma Qlt_Rlt : forall x y : Q, x<y -> (Q2R x < Q2R y)%R.
+Proof.
+unfold Qlt, Q2R in |- *; intros (x1, x2) (y1, y2); unfold Qnum, Qden in |- *;
+ intros.
+set (X1 := IZR x1) in *; assert (X2nz := IZR_nz x2);
+ set (X2 := IZR (Zpos x2)) in *.
+set (Y1 := IZR y1) in *; assert (Y2nz := IZR_nz y2);
+ set (Y2 := IZR (Zpos y2)) in *.
+assert (X1 * Y2 < Y1 * X2)%R.
+ unfold X1, X2, Y1, Y2 in |- *; do 2 rewrite <- mult_IZR.
+ apply IZR_lt; auto.
+clear H.
+replace (X1 * / X2)%R with (X1 * Y2 * (/ X2 * / Y2))%R; try (field; auto).
+replace (Y1 * / Y2)%R with (Y1 * X2 * (/ X2 * / Y2))%R; try (field; auto).
+apply Rmult_lt_compat_r; auto.
+apply Rmult_lt_0_compat; apply Rinv_0_lt_compat.
+unfold X2 in |- *; replace 0%R with (IZR 0); auto; apply IZR_lt; red in |- *;
+ auto with zarith.
+unfold Y2 in |- *; replace 0%R with (IZR 0); auto; apply IZR_lt; red in |- *;
+ auto with zarith.
+Qed.
+
+Lemma Q2R_plus : forall x y : Q, Q2R (x+y) = (Q2R x + Q2R y)%R.
+Proof.
+unfold Qplus, Qeq, Q2R in |- *; intros (x1, x2) (y1, y2);
+ unfold Qden, Qnum in |- *.
+simpl_mult.
+rewrite plus_IZR.
+do 3 rewrite mult_IZR.
+field; auto.
+Qed.
+
+Lemma Q2R_mult : forall x y : Q, Q2R (x*y) = (Q2R x * Q2R y)%R.
+Proof.
+unfold Qmult, Qeq, Q2R in |- *; intros (x1, x2) (y1, y2);
+ unfold Qden, Qnum in |- *.
+simpl_mult.
+do 2 rewrite mult_IZR.
+field; auto.
+Qed.
+
+Lemma Q2R_opp : forall x : Q, Q2R (- x) = (- Q2R x)%R.
+Proof.
+unfold Qopp, Qeq, Q2R in |- *; intros (x1, x2); unfold Qden, Qnum in |- *.
+rewrite Ropp_Ropp_IZR.
+field; auto.
+Qed.
+
+Lemma Q2R_minus : forall x y : Q, Q2R (x-y) = (Q2R x - Q2R y)%R.
+unfold Qminus in |- *; intros; rewrite Q2R_plus; rewrite Q2R_opp; auto.
+Qed.
+
+Lemma Q2R_inv : forall x : Q, ~ x==0#1 -> Q2R (/x) = (/ Q2R x)%R.
+Proof.
+unfold Qinv, Q2R, Qeq in |- *; intros (x1, x2); unfold Qden, Qnum in |- *.
+case x1.
+simpl in |- *; intros; elim H; trivial.
+intros; field; auto.
+apply Rmult_integral_contrapositive; split; auto.
+apply Rmult_integral_contrapositive; split; auto.
+apply Rinv_neq_0_compat; auto.
+intros; field; auto.
+do 2 rewrite <- mult_IZR.
+simpl in |- *; rewrite Pmult_comm; auto.
+apply Rmult_integral_contrapositive; split; auto.
+apply Rmult_integral_contrapositive; split; auto.
+apply not_O_IZR; auto with qarith.
+apply Rinv_neq_0_compat; auto.
+Qed.
+
+Lemma Q2R_div :
+ forall x y : Q, ~ y==0#1 -> Q2R (x/y) = (Q2R x / Q2R y)%R.
+Proof.
+unfold Qdiv, Rdiv in |- *.
+intros; rewrite Q2R_mult.
+rewrite Q2R_inv; auto.
+Qed.
+
+Hint Rewrite Q2R_plus Q2R_mult Q2R_opp Q2R_minus Q2R_inv Q2R_div : q2r_simpl.
+
+Ltac QField := apply eqR_Qeq; autorewrite with q2r_simpl; try field; auto.
+
+(** Examples of use: *)
+
+Goal forall x y z : Q, (x+y)*z == (x*z)+(y*z).
+intros; QField.
+Abort.
+
+Goal forall x y : Q, ~ y==0#1 -> (x/y)*y == x.
+intros; QField.
+intro; apply H; apply eqR_Qeq.
+rewrite H0; unfold Q2R in |- *; simpl in |- *; field; auto with real.
+Abort. \ No newline at end of file