diff options
author | Stephane Glondu <steph@glondu.net> | 2010-07-21 09:46:51 +0200 |
---|---|---|
committer | Stephane Glondu <steph@glondu.net> | 2010-07-21 09:46:51 +0200 |
commit | 5b7eafd0f00a16d78f99a27f5c7d5a0de77dc7e6 (patch) | |
tree | 631ad791a7685edafeb1fb2e8faeedc8379318ae /theories/QArith/Qminmax.v | |
parent | da178a880e3ace820b41d38b191d3785b82991f5 (diff) |
Imported Upstream snapshot 8.3~beta0+13298
Diffstat (limited to 'theories/QArith/Qminmax.v')
-rw-r--r-- | theories/QArith/Qminmax.v | 67 |
1 files changed, 67 insertions, 0 deletions
diff --git a/theories/QArith/Qminmax.v b/theories/QArith/Qminmax.v new file mode 100644 index 00000000..d05a8594 --- /dev/null +++ b/theories/QArith/Qminmax.v @@ -0,0 +1,67 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +Require Import QArith_base Orders QOrderedType GenericMinMax. + +(** * Maximum and Minimum of two rational numbers *) + +Local Open Scope Q_scope. + +(** [Qmin] and [Qmax] are obtained the usual way from [Qcompare]. *) + +Definition Qmax := gmax Qcompare. +Definition Qmin := gmin Qcompare. + +Module QHasMinMax <: HasMinMax Q_as_OT. + Module QMM := GenericMinMax Q_as_OT. + Definition max := Qmax. + Definition min := Qmin. + Definition max_l := QMM.max_l. + Definition max_r := QMM.max_r. + Definition min_l := QMM.min_l. + Definition min_r := QMM.min_r. +End QHasMinMax. + +Module Q. + +(** We obtain hence all the generic properties of max and min. *) + +Include MinMaxProperties Q_as_OT QHasMinMax. + + +(** * Properties specific to the [Q] domain *) + +(** Compatibilities (consequences of monotonicity) *) + +Lemma plus_max_distr_l : forall n m p, Qmax (p + n) (p + m) == p + Qmax n m. +Proof. + intros. apply max_monotone. + intros x x' Hx; rewrite Hx; auto with qarith. + intros x x' Hx. apply Qplus_le_compat; q_order. +Qed. + +Lemma plus_max_distr_r : forall n m p, Qmax (n + p) (m + p) == Qmax n m + p. +Proof. + intros. rewrite (Qplus_comm n p), (Qplus_comm m p), (Qplus_comm _ p). + apply plus_max_distr_l. +Qed. + +Lemma plus_min_distr_l : forall n m p, Qmin (p + n) (p + m) == p + Qmin n m. +Proof. + intros. apply min_monotone. + intros x x' Hx; rewrite Hx; auto with qarith. + intros x x' Hx. apply Qplus_le_compat; q_order. +Qed. + +Lemma plus_min_distr_r : forall n m p, Qmin (n + p) (m + p) == Qmin n m + p. +Proof. + intros. rewrite (Qplus_comm n p), (Qplus_comm m p), (Qplus_comm _ p). + apply plus_min_distr_l. +Qed. + +End Q.
\ No newline at end of file |