diff options
author | Samuel Mimram <smimram@debian.org> | 2008-07-25 15:12:53 +0200 |
---|---|---|
committer | Samuel Mimram <smimram@debian.org> | 2008-07-25 15:12:53 +0200 |
commit | a0cfa4f118023d35b767a999d5a2ac4b082857b4 (patch) | |
tree | dabcac548e299fee1da464c93b3dba98484f45b1 /theories/QArith/Qfield.v | |
parent | 2281410e38ef99d025ea77194585a9bc019fdaa9 (diff) |
Imported Upstream version 8.2~beta3+dfsgupstream/8.2.beta3+dfsg
Diffstat (limited to 'theories/QArith/Qfield.v')
-rw-r--r-- | theories/QArith/Qfield.v | 153 |
1 files changed, 153 insertions, 0 deletions
diff --git a/theories/QArith/Qfield.v b/theories/QArith/Qfield.v new file mode 100644 index 00000000..5d548aea --- /dev/null +++ b/theories/QArith/Qfield.v @@ -0,0 +1,153 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: Qfield.v 10739 2008-04-01 14:45:20Z herbelin $ i*) + +Require Export Field. +Require Export QArith_base. +Require Import NArithRing. + +(** * field and ring tactics for rational numbers *) + +Definition Qeq_bool (x y : Q) := + if Qeq_dec x y then true else false. + +Lemma Qeq_bool_correct : forall x y : Q, Qeq_bool x y = true -> x==y. +Proof. + intros x y; unfold Qeq_bool in |- *; case (Qeq_dec x y); simpl in |- *; auto. + intros _ H; inversion H. +Qed. + +Lemma Qeq_bool_complete : forall x y : Q, x==y -> Qeq_bool x y = true. +Proof. + intros x y; unfold Qeq_bool in |- *; case (Qeq_dec x y); simpl in |- *; auto. +Qed. + +Definition Qsft : field_theory 0 1 Qplus Qmult Qminus Qopp Qdiv Qinv Qeq. +Proof. + constructor. + constructor. + exact Qplus_0_l. + exact Qplus_comm. + exact Qplus_assoc. + exact Qmult_1_l. + exact Qmult_comm. + exact Qmult_assoc. + exact Qmult_plus_distr_l. + reflexivity. + exact Qplus_opp_r. + discriminate. + reflexivity. + intros p Hp. + rewrite Qmult_comm. + apply Qmult_inv_r. + exact Hp. +Qed. + +Lemma Qpower_theory : power_theory 1 Qmult Qeq Z_of_N Qpower. +Proof. +constructor. +intros r [|n]; +reflexivity. +Qed. + +Ltac isQcst t := + match t with + | inject_Z ?z => isZcst z + | Qmake ?n ?d => + match isZcst n with + true => isPcst d + | _ => false + end + | _ => false + end. + +Ltac Qcst t := + match isQcst t with + true => t + | _ => NotConstant + end. + +Ltac Qpow_tac t := + match t with + | Z0 => N0 + | Zpos ?n => Ncst (Npos n) + | Z_of_N ?n => Ncst n + | NtoZ ?n => Ncst n + | _ => NotConstant + end. + +Add Field Qfield : Qsft + (decidable Qeq_bool_correct, + completeness Qeq_bool_complete, + constants [Qcst], + power_tac Qpower_theory [Qpow_tac]). + +(** Exemple of use: *) + +Section Examples. + +Let ex1 : forall x y z : Q, (x+y)*z == (x*z)+(y*z). + intros. + ring. +Qed. + +Let ex2 : forall x y : Q, x+y == y+x. + intros. + ring. +Qed. + +Let ex3 : forall x y z : Q, (x+y)+z == x+(y+z). + intros. + ring. +Qed. + +Let ex4 : (inject_Z 1)+(inject_Z 1)==(inject_Z 2). + ring. +Qed. + +Let ex5 : 1+1 == 2#1. + ring. +Qed. + +Let ex6 : (1#1)+(1#1) == 2#1. + ring. +Qed. + +Let ex7 : forall x : Q, x-x== 0. + intro. + ring. +Qed. + +Let ex8 : forall x : Q, x^1 == x. + intro. + ring. +Qed. + +Let ex9 : forall x : Q, x^0 == 1. + intro. + ring. +Qed. + +Let ex10 : forall x y : Q, ~(y==0) -> (x/y)*y == x. +intros. +field. +auto. +Qed. + +End Examples. + +Lemma Qopp_plus : forall a b, -(a+b) == -a + -b. +Proof. + intros; ring. +Qed. + +Lemma Qopp_opp : forall q, - -q==q. +Proof. + intros; ring. +Qed. |