diff options
author | Enrico Tassi <gareuselesinge@debian.org> | 2015-01-25 14:42:51 +0100 |
---|---|---|
committer | Enrico Tassi <gareuselesinge@debian.org> | 2015-01-25 14:42:51 +0100 |
commit | 7cfc4e5146be5666419451bdd516f1f3f264d24a (patch) | |
tree | e4197645da03dc3c7cc84e434cc31d0a0cca7056 /theories/PArith/Pnat.v | |
parent | 420f78b2caeaaddc6fe484565b2d0e49c66888e5 (diff) |
Imported Upstream version 8.5~beta1+dfsg
Diffstat (limited to 'theories/PArith/Pnat.v')
-rw-r--r-- | theories/PArith/Pnat.v | 136 |
1 files changed, 70 insertions, 66 deletions
diff --git a/theories/PArith/Pnat.v b/theories/PArith/Pnat.v index 449a6700..e529a8c4 100644 --- a/theories/PArith/Pnat.v +++ b/theories/PArith/Pnat.v @@ -1,13 +1,13 @@ (* -*- coding: utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -Require Import BinPos Le Lt Gt Plus Mult Minus Compare_dec. +Require Import BinPos PeanoNat. (** Properties of the injection from binary positive numbers to Peano natural numbers *) @@ -25,7 +25,7 @@ Module Pos2Nat. Lemma inj_succ p : to_nat (succ p) = S (to_nat p). Proof. unfold to_nat. rewrite iter_op_succ. trivial. - apply plus_assoc. + apply Nat.add_assoc. Qed. Theorem inj_add p q : to_nat (p + q) = to_nat p + to_nat q. @@ -99,38 +99,38 @@ Qed. (** [Pos.to_nat] is a morphism for comparison *) -Lemma inj_compare p q : (p ?= q) = nat_compare (to_nat p) (to_nat q). +Lemma inj_compare p q : (p ?= q)%positive = (to_nat p ?= to_nat q). Proof. revert q. induction p as [ |p IH] using peano_ind; intros q. - destruct (succ_pred_or q) as [Hq|Hq]; [now subst|]. - rewrite <- Hq, lt_1_succ, inj_succ, inj_1, nat_compare_S. - symmetry. apply nat_compare_lt, is_pos. - destruct (succ_pred_or q) as [Hq|Hq]; [subst|]. - rewrite compare_antisym, lt_1_succ, inj_succ. simpl. - symmetry. apply nat_compare_gt, is_pos. - now rewrite <- Hq, 2 inj_succ, compare_succ_succ, IH. + - destruct (succ_pred_or q) as [Hq|Hq]; [now subst|]. + rewrite <- Hq, lt_1_succ, inj_succ, inj_1, Nat.compare_succ. + symmetry. apply Nat.compare_lt_iff, is_pos. + - destruct (succ_pred_or q) as [Hq|Hq]; [subst|]. + rewrite compare_antisym, lt_1_succ, inj_succ. simpl. + symmetry. apply Nat.compare_gt_iff, is_pos. + now rewrite <- Hq, 2 inj_succ, compare_succ_succ, IH. Qed. (** [Pos.to_nat] is a morphism for [lt], [le], etc *) Lemma inj_lt p q : (p < q)%positive <-> to_nat p < to_nat q. Proof. - unfold lt. now rewrite inj_compare, nat_compare_lt. + unfold lt. now rewrite inj_compare, Nat.compare_lt_iff. Qed. Lemma inj_le p q : (p <= q)%positive <-> to_nat p <= to_nat q. Proof. - unfold le. now rewrite inj_compare, nat_compare_le. + unfold le. now rewrite inj_compare, Nat.compare_le_iff. Qed. Lemma inj_gt p q : (p > q)%positive <-> to_nat p > to_nat q. Proof. - unfold gt. now rewrite inj_compare, nat_compare_gt. + unfold gt. now rewrite inj_compare, Nat.compare_gt_iff. Qed. Lemma inj_ge p q : (p >= q)%positive <-> to_nat p >= to_nat q. Proof. - unfold ge. now rewrite inj_compare, nat_compare_ge. + unfold ge. now rewrite inj_compare, Nat.compare_ge_iff. Qed. (** [Pos.to_nat] is a morphism for subtraction *) @@ -138,64 +138,66 @@ Qed. Theorem inj_sub p q : (q < p)%positive -> to_nat (p - q) = to_nat p - to_nat q. Proof. - intro H; apply plus_reg_l with (to_nat q); rewrite le_plus_minus_r. - now rewrite <- inj_add, add_comm, sub_add. - now apply lt_le_weak, inj_lt. + intro H. apply Nat.add_cancel_r with (to_nat q). + rewrite Nat.sub_add. + now rewrite <- inj_add, sub_add. + now apply Nat.lt_le_incl, inj_lt. Qed. Theorem inj_sub_max p q : - to_nat (p - q) = Peano.max 1 (to_nat p - to_nat q). + to_nat (p - q) = Nat.max 1 (to_nat p - to_nat q). Proof. destruct (ltb_spec q p). - rewrite <- inj_sub by trivial. - now destruct (is_succ (p - q)) as (m,->). - rewrite sub_le by trivial. - replace (to_nat p - to_nat q) with 0; trivial. - apply le_n_0_eq. - rewrite <- (minus_diag (to_nat p)). - now apply minus_le_compat_l, inj_le. + - (* q < p *) + rewrite <- inj_sub by trivial. + now destruct (is_succ (p - q)) as (m,->). + - (* p <= q *) + rewrite sub_le by trivial. + apply inj_le, Nat.sub_0_le in H. now rewrite H. Qed. Theorem inj_pred p : (1 < p)%positive -> - to_nat (pred p) = Peano.pred (to_nat p). + to_nat (pred p) = Nat.pred (to_nat p). Proof. - intros H. now rewrite <- Pos.sub_1_r, inj_sub, pred_of_minus. + intros. now rewrite <- Pos.sub_1_r, inj_sub, Nat.sub_1_r. Qed. Theorem inj_pred_max p : - to_nat (pred p) = Peano.max 1 (Peano.pred (to_nat p)). + to_nat (pred p) = Nat.max 1 (Peano.pred (to_nat p)). Proof. - rewrite <- Pos.sub_1_r, pred_of_minus. apply inj_sub_max. + rewrite <- Pos.sub_1_r, <- Nat.sub_1_r. apply inj_sub_max. Qed. (** [Pos.to_nat] and other operations *) Lemma inj_min p q : - to_nat (min p q) = Peano.min (to_nat p) (to_nat q). + to_nat (min p q) = Nat.min (to_nat p) (to_nat q). Proof. unfold min. rewrite inj_compare. - case nat_compare_spec; intros H; symmetry. - apply Peano.min_l. now rewrite H. - now apply Peano.min_l, lt_le_weak. - now apply Peano.min_r, lt_le_weak. + case Nat.compare_spec; intros H; symmetry. + - apply Nat.min_l. now rewrite H. + - now apply Nat.min_l, Nat.lt_le_incl. + - now apply Nat.min_r, Nat.lt_le_incl. Qed. Lemma inj_max p q : - to_nat (max p q) = Peano.max (to_nat p) (to_nat q). + to_nat (max p q) = Nat.max (to_nat p) (to_nat q). Proof. unfold max. rewrite inj_compare. - case nat_compare_spec; intros H; symmetry. - apply Peano.max_r. now rewrite H. - now apply Peano.max_r, lt_le_weak. - now apply Peano.max_l, lt_le_weak. + case Nat.compare_spec; intros H; symmetry. + - apply Nat.max_r. now rewrite H. + - now apply Nat.max_r, Nat.lt_le_incl. + - now apply Nat.max_l, Nat.lt_le_incl. Qed. Theorem inj_iter : forall p {A} (f:A->A) (x:A), - Pos.iter p f x = nat_iter (to_nat p) f x. + Pos.iter f x p = nat_rect _ x (fun _ => f) (to_nat p). Proof. - induction p using peano_ind. trivial. - intros. rewrite inj_succ, iter_succ. simpl. now f_equal. + induction p using peano_ind. + - trivial. + - intros. rewrite inj_succ, iter_succ. + simpl. f_equal. apply IHp. Qed. End Pos2Nat. @@ -209,7 +211,7 @@ Module Nat2Pos. Theorem id (n:nat) : n<>0 -> Pos.to_nat (Pos.of_nat n) = n. Proof. induction n as [|n H]; trivial. now destruct 1. - intros _. simpl. destruct n. trivial. + intros _. simpl Pos.of_nat. destruct n. trivial. rewrite Pos2Nat.inj_succ. f_equal. now apply H. Qed. @@ -257,11 +259,11 @@ Lemma inj_mul (n m : nat) : n<>0 -> m<>0 -> Proof. intros Hn Hm. apply Pos2Nat.inj. rewrite Pos2Nat.inj_mul, !id; trivial. -intros H. apply mult_is_O in H. destruct H. now elim Hn. now elim Hm. +intros H. apply Nat.mul_eq_0 in H. destruct H. now elim Hn. now elim Hm. Qed. Lemma inj_compare (n m : nat) : n<>0 -> m<>0 -> - nat_compare n m = (Pos.of_nat n ?= Pos.of_nat m). + (n ?= m) = (Pos.of_nat n ?= Pos.of_nat m)%positive. Proof. intros Hn Hm. rewrite Pos2Nat.inj_compare, !id; trivial. Qed. @@ -282,8 +284,9 @@ Proof. destruct n as [|n]. simpl. symmetry. apply Pos.min_l, Pos.le_1_l. destruct m as [|m]. simpl. symmetry. apply Pos.min_r, Pos.le_1_l. unfold Pos.min. rewrite <- inj_compare by easy. - case nat_compare_spec; intros H; f_equal; apply min_l || apply min_r. - rewrite H; auto. now apply lt_le_weak. now apply lt_le_weak. + case Nat.compare_spec; intros H; f_equal; + apply Nat.min_l || apply Nat.min_r. + rewrite H; auto. now apply Nat.lt_le_incl. now apply Nat.lt_le_incl. Qed. Lemma inj_max (n m : nat) : @@ -292,8 +295,9 @@ Proof. destruct n as [|n]. simpl. symmetry. apply Pos.max_r, Pos.le_1_l. destruct m as [|m]. simpl. symmetry. apply Pos.max_l, Pos.le_1_l. unfold Pos.max. rewrite <- inj_compare by easy. - case nat_compare_spec; intros H; f_equal; apply max_l || apply max_r. - rewrite H; auto. now apply lt_le_weak. now apply lt_le_weak. + case Nat.compare_spec; intros H; f_equal; + apply Nat.max_l || apply Nat.max_r. + rewrite H; auto. now apply Nat.lt_le_incl. now apply Nat.lt_le_incl. Qed. End Nat2Pos. @@ -365,7 +369,7 @@ apply Pos2Nat.inj. now rewrite Pos2Nat.inj_succ, !id_succ. Qed. Lemma inj_compare n m : - nat_compare n m = (Pos.of_succ_nat n ?= Pos.of_succ_nat m). + (n ?= m) = (Pos.of_succ_nat n ?= Pos.of_succ_nat m)%positive. Proof. rewrite Pos2Nat.inj_compare, !id_succ; trivial. Qed. @@ -410,24 +414,24 @@ Notation P_of_succ_nat_o_nat_of_P_eq_succ := Pos2SuccNat.id_succ (compat "8.3"). Notation pred_o_P_of_succ_nat_o_nat_of_P_eq_id := Pos2SuccNat.pred_id (compat "8.3"). Lemma nat_of_P_minus_morphism p q : - Pos.compare_cont p q Eq = Gt -> + Pos.compare_cont Eq p q = Gt -> Pos.to_nat (p - q) = Pos.to_nat p - Pos.to_nat q. Proof (fun H => Pos2Nat.inj_sub p q (Pos.gt_lt _ _ H)). Lemma nat_of_P_lt_Lt_compare_morphism p q : - Pos.compare_cont p q Eq = Lt -> Pos.to_nat p < Pos.to_nat q. + Pos.compare_cont Eq p q = Lt -> Pos.to_nat p < Pos.to_nat q. Proof (proj1 (Pos2Nat.inj_lt p q)). Lemma nat_of_P_gt_Gt_compare_morphism p q : - Pos.compare_cont p q Eq = Gt -> Pos.to_nat p > Pos.to_nat q. + Pos.compare_cont Eq p q = Gt -> Pos.to_nat p > Pos.to_nat q. Proof (proj1 (Pos2Nat.inj_gt p q)). Lemma nat_of_P_lt_Lt_compare_complement_morphism p q : - Pos.to_nat p < Pos.to_nat q -> Pos.compare_cont p q Eq = Lt. + Pos.to_nat p < Pos.to_nat q -> Pos.compare_cont Eq p q = Lt. Proof (proj2 (Pos2Nat.inj_lt p q)). Definition nat_of_P_gt_Gt_compare_complement_morphism p q : - Pos.to_nat p > Pos.to_nat q -> Pos.compare_cont p q Eq = Gt. + Pos.to_nat p > Pos.to_nat q -> Pos.compare_cont Eq p q = Gt. Proof (proj2 (Pos2Nat.inj_gt p q)). (** Old intermediate results about [Pmult_nat] *) @@ -438,11 +442,11 @@ Lemma Pmult_nat_mult : forall p n, Pmult_nat p n = Pos.to_nat p * n. Proof. induction p; intros n; unfold Pos.to_nat; simpl. - f_equal. rewrite 2 IHp. rewrite <- mult_assoc. - f_equal. simpl. now rewrite <- plus_n_O. - rewrite 2 IHp. rewrite <- mult_assoc. - f_equal. simpl. now rewrite <- plus_n_O. - simpl. now rewrite <- plus_n_O. + f_equal. rewrite 2 IHp. rewrite <- Nat.mul_assoc. + f_equal. simpl. now rewrite Nat.add_0_r. + rewrite 2 IHp. rewrite <- Nat.mul_assoc. + f_equal. simpl. now rewrite Nat.add_0_r. + simpl. now rewrite Nat.add_0_r. Qed. Lemma Pmult_nat_succ_morphism : @@ -454,7 +458,7 @@ Qed. Theorem Pmult_nat_l_plus_morphism : forall p q n, Pmult_nat (p + q) n = Pmult_nat p n + Pmult_nat q n. Proof. - intros. rewrite !Pmult_nat_mult, Pos2Nat.inj_add. apply mult_plus_distr_r. + intros. rewrite !Pmult_nat_mult, Pos2Nat.inj_add. apply Nat.mul_add_distr_r. Qed. Theorem Pmult_nat_plus_carry_morphism : @@ -466,19 +470,19 @@ Qed. Lemma Pmult_nat_r_plus_morphism : forall p n, Pmult_nat p (n + n) = Pmult_nat p n + Pmult_nat p n. Proof. - intros. rewrite !Pmult_nat_mult. apply mult_plus_distr_l. + intros. rewrite !Pmult_nat_mult. apply Nat.mul_add_distr_l. Qed. Lemma ZL6 : forall p, Pmult_nat p 2 = Pos.to_nat p + Pos.to_nat p. Proof. - intros. rewrite Pmult_nat_mult, mult_comm. simpl. now rewrite <- plus_n_O. + intros. rewrite Pmult_nat_mult, Nat.mul_comm. simpl. now rewrite Nat.add_0_r. Qed. Lemma le_Pmult_nat : forall p n, n <= Pmult_nat p n. Proof. intros. rewrite Pmult_nat_mult. - apply le_trans with (1*n). now rewrite mult_1_l. - apply mult_le_compat_r. apply Pos2Nat.is_pos. + apply Nat.le_trans with (1*n). now rewrite Nat.mul_1_l. + apply Nat.mul_le_mono_r. apply Pos2Nat.is_pos. Qed. End ObsoletePmultNat. |