diff options
author | 2008-07-25 15:12:53 +0200 | |
---|---|---|
committer | 2008-07-25 15:12:53 +0200 | |
commit | a0cfa4f118023d35b767a999d5a2ac4b082857b4 (patch) | |
tree | dabcac548e299fee1da464c93b3dba98484f45b1 /theories/Numbers/Rational/BigQ/QpMake.v | |
parent | 2281410e38ef99d025ea77194585a9bc019fdaa9 (diff) |
Imported Upstream version 8.2~beta3+dfsgupstream/8.2.beta3+dfsg
Diffstat (limited to 'theories/Numbers/Rational/BigQ/QpMake.v')
-rw-r--r-- | theories/Numbers/Rational/BigQ/QpMake.v | 901 |
1 files changed, 901 insertions, 0 deletions
diff --git a/theories/Numbers/Rational/BigQ/QpMake.v b/theories/Numbers/Rational/BigQ/QpMake.v new file mode 100644 index 00000000..ac3ca47a --- /dev/null +++ b/theories/Numbers/Rational/BigQ/QpMake.v @@ -0,0 +1,901 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) +(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *) +(************************************************************************) + +(*i $Id: QpMake.v 11027 2008-06-01 13:28:59Z letouzey $ i*) + +Require Import Bool. +Require Import ZArith. +Require Import Znumtheory. +Require Import BigNumPrelude. +Require Import Arith. +Require Export BigN. +Require Export BigZ. +Require Import QArith. +Require Import Qcanon. +Require Import Qpower. +Require Import QMake_base. + +Notation Nspec_lt := BigNAxiomsMod.NZOrdAxiomsMod.spec_lt. +Notation Nspec_le := BigNAxiomsMod.NZOrdAxiomsMod.spec_le. + +Module Qp. + + (** The notation of a rational number is either an integer x, + interpreted as itself or a pair (x,y) of an integer x and a naturel + number y interpreted as x/(y+1). *) + + Definition t := q_type. + + Definition zero: t := Qz BigZ.zero. + Definition one: t := Qz BigZ.one. + Definition minus_one: t := Qz BigZ.minus_one. + + Definition of_Z x: t := Qz (BigZ.of_Z x). + + Definition d_to_Z d := BigZ.Pos (BigN.succ d). + + Definition of_Q q: t := + match q with x # y => + Qq (BigZ.of_Z x) (BigN.pred (BigN.of_N (Npos y))) + end. + + Definition of_Qc q := of_Q (this q). + + Definition to_Q (q: t) := + match q with + Qz x => BigZ.to_Z x # 1 + |Qq x y => BigZ.to_Z x # Z2P (BigN.to_Z (BigN.succ y)) + end. + + Definition to_Qc q := !!(to_Q q). + + Notation "[[ x ]]" := (to_Qc x). + + Notation "[ x ]" := (to_Q x). + + Theorem spec_to_Q: forall q: Q, [of_Q q] = q. + intros (x,y); simpl. + rewrite BigZ.spec_of_Z; auto. + rewrite BigN.spec_succ; simpl. simpl. + rewrite BigN.spec_pred; rewrite (BigN.spec_of_pos). + replace (Zpos y - 1 + 1)%Z with (Zpos y); auto; ring. + red; auto. + Qed. + + Theorem spec_to_Qc: forall q, [[of_Qc q]] = q. + intros (x, Hx); unfold of_Qc, to_Qc; simpl. + apply Qc_decomp; simpl. + intros; rewrite spec_to_Q; auto. + Qed. + + Definition opp (x: t): t := + match x with + | Qz zx => Qz (BigZ.opp zx) + | Qq nx dx => Qq (BigZ.opp nx) dx + end. + + + Theorem spec_opp: forall q, ([opp q] = -[q])%Q. + intros [z | x y]; simpl. + rewrite BigZ.spec_opp; auto. + rewrite BigZ.spec_opp; auto. + Qed. + + + Theorem spec_oppc: forall q, [[opp q]] = -[[q]]. + intros q; unfold Qcopp, to_Qc, Q2Qc. + apply Qc_decomp; intros _ _; unfold this. + rewrite spec_opp. + rewrite <- Qred_opp. + rewrite Qred_involutive; auto. + Qed. + + Definition compare (x y: t) := + match x, y with + | Qz zx, Qz zy => BigZ.compare zx zy + | Qz zx, Qq ny dy => BigZ.compare (BigZ.mul zx (d_to_Z dy)) ny + | Qq nx dy, Qz zy => BigZ.compare nx (BigZ.mul zy (d_to_Z dy)) + | Qq nx dx, Qq ny dy => + BigZ.compare (BigZ.mul nx (d_to_Z dy)) (BigZ.mul ny (d_to_Z dx)) + end. + + Theorem spec_compare: forall q1 q2, + compare q1 q2 = ([q1] ?= [q2])%Q. + intros [z1 | x1 y1] [z2 | x2 y2]; unfold Qcompare; simpl. + repeat rewrite Zmult_1_r. + generalize (BigZ.spec_compare z1 z2); case BigZ.compare; intros H; auto. + rewrite H; rewrite Zcompare_refl; auto. + rewrite Zmult_1_r. + rewrite BigN.spec_succ. + rewrite Z2P_correct; auto with zarith. + 2: generalize (BigN.spec_pos y2); auto with zarith. + generalize (BigZ.spec_compare (z1 * d_to_Z y2) x2)%bigZ; case BigZ.compare; + intros H; rewrite <- H. + rewrite BigZ.spec_mul; unfold d_to_Z; simpl. + rewrite BigN.spec_succ. + rewrite Zcompare_refl; auto. + rewrite BigZ.spec_mul; unfold d_to_Z; simpl. + rewrite BigN.spec_succ; auto. + rewrite BigZ.spec_mul; unfold d_to_Z; simpl. + rewrite BigN.spec_succ; auto. + rewrite Zmult_1_r. + rewrite BigN.spec_succ. + rewrite Z2P_correct; auto with zarith. + 2: generalize (BigN.spec_pos y1); auto with zarith. + generalize (BigZ.spec_compare x1 (z2 * d_to_Z y1))%bigZ; case BigZ.compare; + rewrite BigZ.spec_mul; unfold d_to_Z; simpl; + rewrite BigN.spec_succ; intros H; auto. + rewrite H; rewrite Zcompare_refl; auto. + repeat rewrite BigN.spec_succ; auto. + repeat rewrite Z2P_correct; auto with zarith. + 2: generalize (BigN.spec_pos y1); auto with zarith. + 2: generalize (BigN.spec_pos y2); auto with zarith. + generalize (BigZ.spec_compare (x1 * d_to_Z y2) + (x2 * d_to_Z y1))%bigZ; case BigZ.compare; + repeat rewrite BigZ.spec_mul; unfold d_to_Z; simpl; + repeat rewrite BigN.spec_succ; intros H; auto. + rewrite H; auto. + rewrite Zcompare_refl; auto. + Qed. + + + Theorem spec_comparec: forall q1 q2, + compare q1 q2 = ([[q1]] ?= [[q2]]). + unfold Qccompare, to_Qc. + intros q1 q2; rewrite spec_compare; simpl. + apply Qcompare_comp; apply Qeq_sym; apply Qred_correct. + Qed. + +(* Inv d > 0, Pour la forme normal unique on veut d > 1 *) + Definition norm n d: t := + if BigZ.eq_bool n BigZ.zero then zero + else + let gcd := BigN.gcd (BigZ.to_N n) d in + if BigN.eq_bool gcd BigN.one then Qq n (BigN.pred d) + else + let n := BigZ.div n (BigZ.Pos gcd) in + let d := BigN.div d gcd in + if BigN.eq_bool d BigN.one then Qz n + else Qq n (BigN.pred d). + + Theorem spec_norm: forall n q, + ((0 < BigN.to_Z q)%Z -> [norm n q] == [Qq n (BigN.pred q)])%Q. + intros p q; unfold norm; intros Hq. + assert (Hp := BigN.spec_pos (BigZ.to_N p)). + match goal with |- context[BigZ.eq_bool ?X ?Y] => + generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool + end; auto; rewrite BigZ.spec_0; intros H1. + red; simpl; rewrite H1; ring. + case (Zle_lt_or_eq _ _ Hp); clear Hp; intros Hp. + case (Zle_lt_or_eq _ _ + (Zgcd_is_pos (BigN.to_Z (BigZ.to_N p)) (BigN.to_Z q))); intros H4. + 2: generalize Hq; rewrite (Zgcd_inv_0_r _ _ (sym_equal H4)); auto with zarith. + 2: red; simpl; auto with zarith. + match goal with |- context[BigN.eq_bool ?X ?Y] => + generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool + end; auto; rewrite BigN.spec_1; intros H2. + apply Qeq_refl. + match goal with |- context[BigN.eq_bool ?X ?Y] => + generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool + end; auto; rewrite BigN.spec_1. + red; simpl. + rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith. + rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith. + rewrite Zmult_1_r. + rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto). + rewrite Z2P_correct; auto with zarith. + rewrite spec_to_N; intros; rewrite Zgcd_div_swap; auto. + rewrite H; ring. + intros H3. + red; simpl. + rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith. + rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto). + assert (F: (0 < BigN.to_Z (q / BigN.gcd (BigZ.to_N p) q)%bigN)%Z). + rewrite BigN.spec_div; auto with zarith. + rewrite BigN.spec_gcd. + apply Zgcd_div_pos; auto. + rewrite BigN.spec_gcd; auto. + rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto). + rewrite Z2P_correct; auto. + rewrite Z2P_correct; auto. + rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith. + rewrite spec_to_N; apply Zgcd_div_swap; auto. + case H1; rewrite spec_to_N; rewrite <- Hp; ring. + Qed. + + Theorem spec_normc: forall n q, + (0 < BigN.to_Z q)%Z -> [[norm n q]] = [[Qq n (BigN.pred q)]]. + intros n q H; unfold to_Qc, Q2Qc. + apply Qc_decomp; intros _ _; unfold this. + apply Qred_complete; apply spec_norm; auto. + Qed. + + Definition add (x y: t): t := + match x, y with + | Qz zx, Qz zy => Qz (BigZ.add zx zy) + | Qz zx, Qq ny dy => Qq (BigZ.add (BigZ.mul zx (d_to_Z dy)) ny) dy + | Qq nx dx, Qz zy => Qq (BigZ.add nx (BigZ.mul zy (d_to_Z dx))) dx + | Qq nx dx, Qq ny dy => + let dx' := BigN.succ dx in + let dy' := BigN.succ dy in + let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy')) (BigZ.mul ny (BigZ.Pos dx')) in + let d := BigN.pred (BigN.mul dx' dy') in + Qq n d + end. + + Theorem spec_d_to_Z: forall dy, + (BigZ.to_Z (d_to_Z dy) = BigN.to_Z dy + 1)%Z. + intros dy; unfold d_to_Z; simpl. + rewrite BigN.spec_succ; auto. + Qed. + + Theorem spec_succ_pos: forall p, + (0 < BigN.to_Z (BigN.succ p))%Z. + intros p; rewrite BigN.spec_succ; + generalize (BigN.spec_pos p); auto with zarith. + Qed. + + Theorem spec_add x y: ([add x y] == [x] + [y])%Q. + intros [x | nx dx] [y | ny dy]; unfold Qplus; simpl. + rewrite BigZ.spec_add; repeat rewrite Zmult_1_r; auto. + apply Qeq_refl; auto. + assert (F1:= BigN.spec_pos dy). + rewrite Zmult_1_r. + simpl; rewrite Z2P_correct; rewrite BigN.spec_succ; auto with zarith. + rewrite BigZ.spec_add; rewrite BigZ.spec_mul. + rewrite spec_d_to_Z; apply Qeq_refl. + assert (F1:= BigN.spec_pos dx). + rewrite Zmult_1_r; rewrite Pmult_1_r. + simpl; rewrite Z2P_correct; rewrite BigN.spec_succ; auto with zarith. + rewrite BigZ.spec_add; rewrite BigZ.spec_mul. + rewrite spec_d_to_Z; apply Qeq_refl. + repeat rewrite BigN.spec_succ. + assert (Fx: (0 < BigN.to_Z dx + 1)%Z). + generalize (BigN.spec_pos dx); auto with zarith. + assert (Fy: (0 < BigN.to_Z dy + 1)%Z). + generalize (BigN.spec_pos dy); auto with zarith. + repeat rewrite BigN.spec_pred. + rewrite BigZ.spec_add; repeat rewrite BigN.spec_mul; + repeat rewrite BigN.spec_succ. + assert (tmp: forall x, (x-1+1 = x)%Z); [intros; ring | rewrite tmp; clear tmp]. + repeat rewrite Z2P_correct; auto. + repeat rewrite BigZ.spec_mul; simpl. + repeat rewrite BigN.spec_succ. + assert (tmp: + (forall a b, 0 < a -> 0 < b -> Z2P (a * b) = (Z2P a * Z2P b)%positive)%Z). + intros [|a|a] [|b|b]; simpl; auto; intros; apply False_ind; auto with zarith. + rewrite tmp; auto; apply Qeq_refl. + rewrite BigN.spec_mul; repeat rewrite BigN.spec_succ; auto with zarith. + apply Zmult_lt_0_compat; auto. + Qed. + + Theorem spec_addc x y: [[add x y]] = [[x]] + [[y]]. + intros x y; unfold to_Qc. + apply trans_equal with (!! ([x] + [y])). + unfold Q2Qc. + apply Qc_decomp; intros _ _; unfold this. + apply Qred_complete; apply spec_add. + unfold Qcplus, Q2Qc. + apply Qc_decomp; intros _ _; unfold this. + apply Qred_complete. + apply Qplus_comp; apply Qeq_sym; apply Qred_correct. + Qed. + + Definition add_norm (x y: t): t := + match x, y with + | Qz zx, Qz zy => Qz (BigZ.add zx zy) + | Qz zx, Qq ny dy => + let d := BigN.succ dy in + norm (BigZ.add (BigZ.mul zx (BigZ.Pos d)) ny) d + | Qq nx dx, Qz zy => + let d := BigN.succ dx in + norm (BigZ.add (BigZ.mul zy (BigZ.Pos d)) nx) d + | Qq nx dx, Qq ny dy => + let dx' := BigN.succ dx in + let dy' := BigN.succ dy in + let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy')) (BigZ.mul ny (BigZ.Pos dx')) in + let d := BigN.mul dx' dy' in + norm n d + end. + + Theorem spec_add_norm x y: ([add_norm x y] == [x] + [y])%Q. + intros x y; rewrite <- spec_add. + unfold add_norm, add; case x; case y. + intros; apply Qeq_refl. + intros p1 n p2. + match goal with |- [norm ?X ?Y] == _ => + apply Qeq_trans with ([Qq X (BigN.pred Y)]); + [apply spec_norm | idtac] + end. + rewrite BigN.spec_succ; generalize (BigN.spec_pos n); auto with zarith. + simpl. + repeat rewrite BigZ.spec_add. + repeat rewrite BigZ.spec_mul; simpl. + rewrite BigN.succ_pred; try apply Qeq_refl; apply lt_0_succ. + intros p1 n p2. + match goal with |- [norm ?X ?Y] == _ => + apply Qeq_trans with ([Qq X (BigN.pred Y)]); + [apply spec_norm | idtac] + end. + rewrite BigN.spec_succ; generalize (BigN.spec_pos p2); auto with zarith. + simpl. + repeat rewrite BigZ.spec_add. + repeat rewrite BigZ.spec_mul; simpl. + rewrite BinInt.Zplus_comm. + rewrite BigN.succ_pred; try apply Qeq_refl; apply lt_0_succ. + intros p1 q1 p2 q2. + match goal with |- [norm ?X ?Y] == _ => + apply Qeq_trans with ([Qq X (BigN.pred Y)]); + [apply spec_norm | idtac] + end; try apply Qeq_refl. + rewrite BigN.spec_mul. + apply Zmult_lt_0_compat; apply spec_succ_pos. + Qed. + + Theorem spec_add_normc x y: [[add_norm x y]] = [[x]] + [[y]]. + intros x y; unfold to_Qc. + apply trans_equal with (!! ([x] + [y])). + unfold Q2Qc. + apply Qc_decomp; intros _ _; unfold this. + apply Qred_complete; apply spec_add_norm. + unfold Qcplus, Q2Qc. + apply Qc_decomp; intros _ _; unfold this. + apply Qred_complete. + apply Qplus_comp; apply Qeq_sym; apply Qred_correct. + Qed. + + Definition sub (x y: t): t := add x (opp y). + + Theorem spec_sub x y: ([sub x y] == [x] - [y])%Q. + intros x y; unfold sub; rewrite spec_add. + rewrite spec_opp; ring. + Qed. + + Theorem spec_subc x y: [[sub x y]] = [[x]] - [[y]]. + intros x y; unfold sub; rewrite spec_addc. + rewrite spec_oppc; ring. + Qed. + + Definition sub_norm x y := add_norm x (opp y). + + Theorem spec_sub_norm x y: ([sub_norm x y] == [x] - [y])%Q. + intros x y; unfold sub_norm; rewrite spec_add_norm. + rewrite spec_opp; ring. + Qed. + + Theorem spec_sub_normc x y: [[sub_norm x y]] = [[x]] - [[y]]. + intros x y; unfold sub_norm; rewrite spec_add_normc. + rewrite spec_oppc; ring. + Qed. + + + Definition mul (x y: t): t := + match x, y with + | Qz zx, Qz zy => Qz (BigZ.mul zx zy) + | Qz zx, Qq ny dy => Qq (BigZ.mul zx ny) dy + | Qq nx dx, Qz zy => Qq (BigZ.mul nx zy) dx + | Qq nx dx, Qq ny dy => + Qq (BigZ.mul nx ny) (BigN.pred (BigN.mul (BigN.succ dx) (BigN.succ dy))) + end. + + Theorem spec_mul x y: ([mul x y] == [x] * [y])%Q. + intros [x | nx dx] [y | ny dy]; unfold Qmult; simpl. + rewrite BigZ.spec_mul; repeat rewrite Zmult_1_r; auto. + apply Qeq_refl; auto. + rewrite BigZ.spec_mul; apply Qeq_refl. + rewrite BigZ.spec_mul; rewrite Pmult_1_r; auto. + apply Qeq_refl; auto. + assert (F1:= spec_succ_pos dx). + assert (F2:= spec_succ_pos dy). + rewrite BigN.succ_pred. + rewrite BigN.spec_mul; rewrite BigZ.spec_mul. + assert (tmp: + (forall a b, 0 < a -> 0 < b -> Z2P (a * b) = (Z2P a * Z2P b)%positive)%Z). + intros [|a|a] [|b|b]; simpl; auto; intros; apply False_ind; auto with zarith. + rewrite tmp; auto; apply Qeq_refl. + rewrite Nspec_lt, BigN.spec_0, BigN.spec_mul; auto. + apply Zmult_lt_0_compat; apply spec_succ_pos. + Qed. + + Theorem spec_mulc x y: [[mul x y]] = [[x]] * [[y]]. + intros x y; unfold to_Qc. + apply trans_equal with (!! ([x] * [y])). + unfold Q2Qc. + apply Qc_decomp; intros _ _; unfold this. + apply Qred_complete; apply spec_mul. + unfold Qcmult, Q2Qc. + apply Qc_decomp; intros _ _; unfold this. + apply Qred_complete. + apply Qmult_comp; apply Qeq_sym; apply Qred_correct. + Qed. + + Definition mul_norm (x y: t): t := + match x, y with + | Qz zx, Qz zy => Qz (BigZ.mul zx zy) + | Qz zx, Qq ny dy => + if BigZ.eq_bool zx BigZ.zero then zero + else + let d := BigN.succ dy in + let gcd := BigN.gcd (BigZ.to_N zx) d in + if BigN.eq_bool gcd BigN.one then Qq (BigZ.mul zx ny) dy + else + let zx := BigZ.div zx (BigZ.Pos gcd) in + let d := BigN.div d gcd in + if BigN.eq_bool d BigN.one then Qz (BigZ.mul zx ny) + else Qq (BigZ.mul zx ny) (BigN.pred d) + | Qq nx dx, Qz zy => + if BigZ.eq_bool zy BigZ.zero then zero + else + let d := BigN.succ dx in + let gcd := BigN.gcd (BigZ.to_N zy) d in + if BigN.eq_bool gcd BigN.one then Qq (BigZ.mul zy nx) dx + else + let zy := BigZ.div zy (BigZ.Pos gcd) in + let d := BigN.div d gcd in + if BigN.eq_bool d BigN.one then Qz (BigZ.mul zy nx) + else Qq (BigZ.mul zy nx) (BigN.pred d) + | Qq nx dx, Qq ny dy => + norm (BigZ.mul nx ny) (BigN.mul (BigN.succ dx) (BigN.succ dy)) + end. + + Theorem spec_mul_norm x y: ([mul_norm x y] == [x] * [y])%Q. + intros x y; rewrite <- spec_mul. + unfold mul_norm, mul; case x; case y. + intros; apply Qeq_refl. + intros p1 n p2. + match goal with |- context[BigZ.eq_bool ?X ?Y] => + generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool + end; unfold zero, to_Q; repeat rewrite BigZ.spec_0; intros H. + rewrite BigZ.spec_mul; rewrite H; red; auto. + assert (F: (0 < BigN.to_Z (BigZ.to_N p2))%Z). + case (Zle_lt_or_eq _ _ (BigN.spec_pos (BigZ.to_N p2))); auto. + intros H1; case H; rewrite spec_to_N; rewrite <- H1; ring. + assert (F1: (0 < BigN.to_Z (BigN.succ n))%Z). + rewrite BigN.spec_succ; generalize (BigN.spec_pos n); auto with zarith. + assert (F2: (0 < Zgcd (BigN.to_Z (BigZ.to_N p2)) (BigN.to_Z (BigN.succ n)))%Z). + case (Zle_lt_or_eq _ _ (Zgcd_is_pos (BigN.to_Z (BigZ.to_N p2)) + (BigN.to_Z (BigN.succ n)))); intros H3; auto. + generalize F; rewrite (Zgcd_inv_0_l _ _ (sym_equal H3)); auto with zarith. + match goal with |- context[BigN.eq_bool ?X ?Y] => + generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool + end; rewrite BigN.spec_1; intros H1. + intros; apply Qeq_refl. + match goal with |- context[BigN.eq_bool ?X ?Y] => + generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool + end; rewrite BigN.spec_1. + rewrite BigN.spec_div; rewrite BigN.spec_gcd; + auto with zarith. + intros H2. + red; simpl. + repeat rewrite BigZ.spec_mul. + rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith. + rewrite Z2P_correct; auto with zarith. + rewrite spec_to_N. + rewrite Zmult_1_r; repeat rewrite <- Zmult_assoc. + rewrite (Zmult_comm (BigZ.to_Z p1)). + repeat rewrite Zmult_assoc. + rewrite Zgcd_div_swap; auto with zarith. + rewrite H2; ring. + intros H2. + red; simpl. + repeat rewrite BigZ.spec_mul. + rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith. + rewrite Z2P_correct; auto with zarith. + rewrite (spec_to_N p2). + case (Zle_lt_or_eq _ _ + (BigN.spec_pos (BigN.succ n / + BigN.gcd (BigZ.to_N p2) + (BigN.succ n)))%bigN); intros F3. + rewrite BigN.succ_pred; auto with zarith. + rewrite Z2P_correct; auto with zarith. + rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith. + repeat rewrite <- Zmult_assoc. + rewrite (Zmult_comm (BigZ.to_Z p1)). + repeat rewrite Zmult_assoc. + rewrite Zgcd_div_swap; auto; try ring. + rewrite Nspec_lt, BigN.spec_0; auto. + apply False_ind; generalize F1. + rewrite (Zdivide_Zdiv_eq + (Zgcd (BigN.to_Z (BigZ.to_N p2)) (BigN.to_Z (BigN.succ n))) + (BigN.to_Z (BigN.succ n))); auto. + generalize F3; rewrite BigN.spec_div; rewrite BigN.spec_gcd; + auto with zarith. + intros HH; rewrite <- HH; auto with zarith. + assert (FF:= Zgcd_is_gcd (BigN.to_Z (BigZ.to_N p2)) + (BigN.to_Z (BigN.succ n))); inversion FF; auto. + intros p1 p2 n. + match goal with |- context[BigZ.eq_bool ?X ?Y] => + generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool + end; unfold zero, to_Q; repeat rewrite BigZ.spec_0; intros H. + rewrite BigZ.spec_mul; rewrite H; red; simpl; ring. + assert (F: (0 < BigN.to_Z (BigZ.to_N p1))%Z). + case (Zle_lt_or_eq _ _ (BigN.spec_pos (BigZ.to_N p1))); auto. + intros H1; case H; rewrite spec_to_N; rewrite <- H1; ring. + assert (F1: (0 < BigN.to_Z (BigN.succ n))%Z). + rewrite BigN.spec_succ; generalize (BigN.spec_pos n); auto with zarith. + assert (F2: (0 < Zgcd (BigN.to_Z (BigZ.to_N p1)) (BigN.to_Z (BigN.succ n)))%Z). + case (Zle_lt_or_eq _ _ (Zgcd_is_pos (BigN.to_Z (BigZ.to_N p1)) + (BigN.to_Z (BigN.succ n)))); intros H3; auto. + generalize F; rewrite (Zgcd_inv_0_l _ _ (sym_equal H3)); auto with zarith. + match goal with |- context[BigN.eq_bool ?X ?Y] => + generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool + end; rewrite BigN.spec_1; intros H1. + intros; repeat rewrite BigZ.spec_mul; rewrite Zmult_comm; apply Qeq_refl. + match goal with |- context[BigN.eq_bool ?X ?Y] => + generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool + end; rewrite BigN.spec_1. + rewrite BigN.spec_div; rewrite BigN.spec_gcd; + auto with zarith. + intros H2. + red; simpl. + repeat rewrite BigZ.spec_mul. + rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith. + rewrite Z2P_correct; auto with zarith. + rewrite spec_to_N. + rewrite Zmult_1_r; repeat rewrite <- Zmult_assoc. + rewrite (Zmult_comm (BigZ.to_Z p2)). + repeat rewrite Zmult_assoc. + rewrite Zgcd_div_swap; auto with zarith. + rewrite H2; ring. + intros H2. + red; simpl. + repeat rewrite BigZ.spec_mul. + rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith. + rewrite Z2P_correct; auto with zarith. + rewrite (spec_to_N p1). + case (Zle_lt_or_eq _ _ + (BigN.spec_pos (BigN.succ n / + BigN.gcd (BigZ.to_N p1) + (BigN.succ n)))%bigN); intros F3. + rewrite BigN.succ_pred; auto with zarith. + rewrite Z2P_correct; auto with zarith. + rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith. + repeat rewrite <- Zmult_assoc. + rewrite (Zmult_comm (BigZ.to_Z p2)). + repeat rewrite Zmult_assoc. + rewrite Zgcd_div_swap; auto; try ring. + rewrite Nspec_lt, BigN.spec_0; auto. + apply False_ind; generalize F1. + rewrite (Zdivide_Zdiv_eq + (Zgcd (BigN.to_Z (BigZ.to_N p1)) (BigN.to_Z (BigN.succ n))) + (BigN.to_Z (BigN.succ n))); auto. + generalize F3; rewrite BigN.spec_div; rewrite BigN.spec_gcd; + auto with zarith. + intros HH; rewrite <- HH; auto with zarith. + assert (FF:= Zgcd_is_gcd (BigN.to_Z (BigZ.to_N p1)) + (BigN.to_Z (BigN.succ n))); inversion FF; auto. + intros p1 n1 p2 n2. + match goal with |- [norm ?X ?Y] == _ => + apply Qeq_trans with ([Qq X (BigN.pred Y)]); + [apply spec_norm | idtac] + end; try apply Qeq_refl. + rewrite BigN.spec_mul. + apply Zmult_lt_0_compat; rewrite BigN.spec_succ; + generalize (BigN.spec_pos n1) (BigN.spec_pos n2); auto with zarith. + Qed. + + Theorem spec_mul_normc x y: [[mul_norm x y]] = [[x]] * [[y]]. + intros x y; unfold to_Qc. + apply trans_equal with (!! ([x] * [y])). + unfold Q2Qc. + apply Qc_decomp; intros _ _; unfold this. + apply Qred_complete; apply spec_mul_norm. + unfold Qcmult, Q2Qc. + apply Qc_decomp; intros _ _; unfold this. + apply Qred_complete. + apply Qmult_comp; apply Qeq_sym; apply Qred_correct. + Qed. + + Definition inv (x: t): t := + match x with + | Qz (BigZ.Pos n) => + if BigN.eq_bool n BigN.zero then zero else Qq BigZ.one (BigN.pred n) + | Qz (BigZ.Neg n) => + if BigN.eq_bool n BigN.zero then zero else Qq BigZ.minus_one (BigN.pred n) + | Qq (BigZ.Pos n) d => + if BigN.eq_bool n BigN.zero then zero else Qq (BigZ.Pos (BigN.succ d)) (BigN.pred n) + | Qq (BigZ.Neg n) d => + if BigN.eq_bool n BigN.zero then zero else Qq (BigZ.Neg (BigN.succ d)) (BigN.pred n) + end. + + Theorem spec_inv x: ([inv x] == /[x])%Q. + intros [ [x | x] | [nx | nx] dx]; unfold inv. + match goal with |- context[BigN.eq_bool ?X ?Y] => + generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool + end; rewrite BigN.spec_0; intros H. + unfold zero, to_Q; rewrite BigZ.spec_0. + unfold BigZ.to_Z; rewrite H; apply Qeq_refl. + assert (F: (0 < BigN.to_Z x)%Z). + case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); auto with zarith. + unfold to_Q; rewrite BigZ.spec_1. + rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto). + red; unfold Qinv; simpl. + generalize F; case BigN.to_Z; auto with zarith. + intros p Hp; discriminate Hp. + match goal with |- context[BigN.eq_bool ?X ?Y] => + generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool + end; rewrite BigN.spec_0; intros H. + unfold zero, to_Q; rewrite BigZ.spec_0. + unfold BigZ.to_Z; rewrite H; apply Qeq_refl. + assert (F: (0 < BigN.to_Z x)%Z). + case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); auto with zarith. + red; unfold Qinv; simpl. + rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto). + generalize F; case BigN.to_Z; simpl; auto with zarith. + intros p Hp; discriminate Hp. + match goal with |- context[BigN.eq_bool ?X ?Y] => + generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool + end; rewrite BigN.spec_0; intros H. + unfold zero, to_Q; rewrite BigZ.spec_0. + unfold BigZ.to_Z; rewrite H; apply Qeq_refl. + assert (F: (0 < BigN.to_Z nx)%Z). + case (Zle_lt_or_eq _ _ (BigN.spec_pos nx)); auto with zarith. + red; unfold Qinv; simpl. + rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto). + rewrite BigN.spec_succ; rewrite Z2P_correct; auto with zarith. + generalize F; case BigN.to_Z; auto with zarith. + intros p Hp; discriminate Hp. + generalize (BigN.spec_pos dx); auto with zarith. + match goal with |- context[BigN.eq_bool ?X ?Y] => + generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool + end; rewrite BigN.spec_0; intros H. + unfold zero, to_Q; rewrite BigZ.spec_0. + unfold BigZ.to_Z; rewrite H; apply Qeq_refl. + assert (F: (0 < BigN.to_Z nx)%Z). + case (Zle_lt_or_eq _ _ (BigN.spec_pos nx)); auto with zarith. + red; unfold Qinv; simpl. + rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto). + rewrite BigN.spec_succ; rewrite Z2P_correct; auto with zarith. + generalize F; case BigN.to_Z; auto with zarith. + simpl; intros. + match goal with |- (?X = Zneg ?Y)%Z => + replace (Zneg Y) with (-(Zpos Y))%Z; + try rewrite Z2P_correct; auto with zarith + end. + rewrite Zpos_mult_morphism; + rewrite Z2P_correct; auto with zarith; try ring. + generalize (BigN.spec_pos dx); auto with zarith. + intros p Hp; discriminate Hp. + generalize (BigN.spec_pos dx); auto with zarith. + Qed. + + Theorem spec_invc x: [[inv x]] = /[[x]]. + intros x; unfold to_Qc. + apply trans_equal with (!! (/[x])). + unfold Q2Qc. + apply Qc_decomp; intros _ _; unfold this. + apply Qred_complete; apply spec_inv. + unfold Qcinv, Q2Qc. + apply Qc_decomp; intros _ _; unfold this. + apply Qred_complete. + apply Qinv_comp; apply Qeq_sym; apply Qred_correct. + Qed. + +Definition inv_norm x := + match x with + | Qz (BigZ.Pos n) => + if BigN.eq_bool n BigN.zero then zero else + if BigN.eq_bool n BigN.one then x else Qq BigZ.one (BigN.pred n) + | Qz (BigZ.Neg n) => + if BigN.eq_bool n BigN.zero then zero else + if BigN.eq_bool n BigN.one then x else Qq BigZ.minus_one (BigN.pred n) + | Qq (BigZ.Pos n) d => let d := BigN.succ d in + if BigN.eq_bool n BigN.zero then zero else + if BigN.eq_bool n BigN.one then Qz (BigZ.Pos d) + else Qq (BigZ.Pos d) (BigN.pred n) + | Qq (BigZ.Neg n) d => let d := BigN.succ d in + if BigN.eq_bool n BigN.zero then zero else + if BigN.eq_bool n BigN.one then Qz (BigZ.Neg d) + else Qq (BigZ.Neg d) (BigN.pred n) + end. + + Theorem spec_inv_norm x: ([inv_norm x] == /[x])%Q. + intros x; rewrite <- spec_inv. + (case x; clear x); [intros [x | x] | intros nx dx]; + unfold inv_norm, inv. + match goal with |- context[BigN.eq_bool ?X ?Y] => + generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool + end; rewrite BigN.spec_0; intros H. + apply Qeq_refl. + assert (F: (0 < BigN.to_Z x)%Z). + case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); auto with zarith. + match goal with |- context[BigN.eq_bool ?X ?Y] => + generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool + end; rewrite BigN.spec_1; intros H1. + red; simpl. + rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto). + rewrite Z2P_correct; try rewrite H1; auto with zarith. + apply Qeq_refl. + match goal with |- context[BigN.eq_bool ?X ?Y] => + generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool + end; rewrite BigN.spec_0; intros H. + apply Qeq_refl. + assert (F: (0 < BigN.to_Z x)%Z). + case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); auto with zarith. + match goal with |- context[BigN.eq_bool ?X ?Y] => + generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool + end; rewrite BigN.spec_1; intros H1. + red; simpl. + rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto). + rewrite Z2P_correct; try rewrite H1; auto with zarith. + apply Qeq_refl. + case nx; clear nx; intros nx. + match goal with |- context[BigN.eq_bool ?X ?Y] => + generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool + end; rewrite BigN.spec_0; intros H. + apply Qeq_refl. + match goal with |- context[BigN.eq_bool ?X ?Y] => + generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool + end; rewrite BigN.spec_1; intros H1. + red; simpl. + rewrite BigN.succ_pred; try rewrite H1; auto with zarith. + rewrite Nspec_lt, BigN.spec_0, H1; auto with zarith. + apply Qeq_refl. + match goal with |- context[BigN.eq_bool ?X ?Y] => + generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool + end; rewrite BigN.spec_0; intros H. + apply Qeq_refl. + match goal with |- context[BigN.eq_bool ?X ?Y] => + generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool + end; rewrite BigN.spec_1; intros H1. + red; simpl. + rewrite BigN.succ_pred; try rewrite H1; auto with zarith. + rewrite Nspec_lt, BigN.spec_0, H1; auto with zarith. + apply Qeq_refl. + Qed. + + + Definition div x y := mul x (inv y). + + Theorem spec_div x y: ([div x y] == [x] / [y])%Q. + intros x y; unfold div; rewrite spec_mul; auto. + unfold Qdiv; apply Qmult_comp. + apply Qeq_refl. + apply spec_inv; auto. + Qed. + + Theorem spec_divc x y: [[div x y]] = [[x]] / [[y]]. + intros x y; unfold div; rewrite spec_mulc; auto. + unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto. + apply spec_invc; auto. + Qed. + + Definition div_norm x y := mul_norm x (inv y). + + Theorem spec_div_norm x y: ([div_norm x y] == [x] / [y])%Q. + intros x y; unfold div_norm; rewrite spec_mul_norm; auto. + unfold Qdiv; apply Qmult_comp. + apply Qeq_refl. + apply spec_inv; auto. + Qed. + + Theorem spec_div_normc x y: [[div_norm x y]] = [[x]] / [[y]]. + intros x y; unfold div_norm; rewrite spec_mul_normc; auto. + unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto. + apply spec_invc; auto. + Qed. + + + Definition square (x: t): t := + match x with + | Qz zx => Qz (BigZ.square zx) + | Qq nx dx => Qq (BigZ.square nx) (BigN.pred (BigN.square (BigN.succ dx))) + end. + + Theorem spec_square x: ([square x] == [x] ^ 2)%Q. + intros [ x | nx dx]; unfold square. + red; simpl; rewrite BigZ.spec_square; auto with zarith. + red; simpl; rewrite BigZ.spec_square; auto with zarith. + assert (F: (0 < BigN.to_Z (BigN.succ dx))%Z). + rewrite BigN.spec_succ; + case (Zle_lt_or_eq _ _ (BigN.spec_pos dx)); auto with zarith. + assert (F1 : (0 < BigN.to_Z (BigN.square (BigN.succ dx)))%Z). + rewrite BigN.spec_square; apply Zmult_lt_0_compat; + auto with zarith. + rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto). + rewrite Zpos_mult_morphism. + repeat rewrite Z2P_correct; auto with zarith. + repeat rewrite BigN.spec_succ; auto with zarith. + rewrite BigN.spec_square; auto with zarith. + repeat rewrite BigN.spec_succ; auto with zarith. + Qed. + + Theorem spec_squarec x: [[square x]] = [[x]]^2. + intros x; unfold to_Qc. + apply trans_equal with (!! ([x]^2)). + unfold Q2Qc. + apply Qc_decomp; intros _ _; unfold this. + apply Qred_complete; apply spec_square. + simpl Qcpower. + replace (!! [x] * 1) with (!![x]); try ring. + simpl. + unfold Qcmult, Q2Qc. + apply Qc_decomp; intros _ _; unfold this. + apply Qred_complete. + apply Qmult_comp; apply Qeq_sym; apply Qred_correct. + Qed. + + Definition power_pos (x: t) p: t := + match x with + | Qz zx => Qz (BigZ.power_pos zx p) + | Qq nx dx => Qq (BigZ.power_pos nx p) (BigN.pred (BigN.power_pos (BigN.succ dx) p)) + end. + + + Theorem spec_power_pos x p: ([power_pos x p] == [x] ^ Zpos p)%Q. + Proof. + intros [x | nx dx] p; unfold power_pos. + unfold power_pos; red; simpl. + generalize (Qpower_decomp p (BigZ.to_Z x) 1). + unfold Qeq; simpl. + rewrite Zpower_pos_1_l; simpl Z2P. + rewrite Zmult_1_r. + intros H; rewrite H. + rewrite BigZ.spec_power_pos; simpl; ring. + assert (F1: (0 < BigN.to_Z (BigN.succ dx))%Z). + rewrite BigN.spec_succ; + generalize (BigN.spec_pos dx); auto with zarith. + assert (F2: (0 < BigN.to_Z (BigN.succ dx) ^ ' p)%Z). + unfold Zpower; apply Zpower_pos_pos; auto. + unfold power_pos; red; simpl. + rewrite BigN.succ_pred, BigN.spec_power_pos. + rewrite Z2P_correct; auto. + generalize (Qpower_decomp p (BigZ.to_Z nx) + (Z2P (BigN.to_Z (BigN.succ dx)))). + unfold Qeq; simpl. + repeat rewrite Z2P_correct; auto. + unfold Qeq; simpl; intros HH. + rewrite HH. + rewrite BigZ.spec_power_pos; simpl; ring. + rewrite Nspec_lt, BigN.spec_0, BigN.spec_power_pos; auto. + Qed. + + Theorem spec_power_posc x p: [[power_pos x p]] = [[x]] ^ nat_of_P p. + intros x p; unfold to_Qc. + apply trans_equal with (!! ([x]^Zpos p)). + unfold Q2Qc. + apply Qc_decomp; intros _ _; unfold this. + apply Qred_complete; apply spec_power_pos. + pattern p; apply Pind; clear p. + simpl; ring. + intros p Hrec. + rewrite nat_of_P_succ_morphism; simpl Qcpower. + rewrite <- Hrec. + unfold Qcmult, Q2Qc. + apply Qc_decomp; intros _ _; + unfold this. + apply Qred_complete. + assert (F: [x] ^ ' Psucc p == [x] * [x] ^ ' p). + simpl; case x; simpl; clear x Hrec. + intros x; simpl; repeat rewrite Qpower_decomp; simpl. + red; simpl; repeat rewrite Zpower_pos_1_l; simpl Z2P. + rewrite Pplus_one_succ_l. + rewrite Zpower_pos_is_exp. + rewrite Zpower_pos_1_r; auto. + intros nx dx; simpl; repeat rewrite Qpower_decomp; simpl. + red; simpl; repeat rewrite Zpower_pos_1_l; simpl Z2P. + rewrite Pplus_one_succ_l. + rewrite Zpower_pos_is_exp. + rewrite Zpower_pos_1_r; auto. + assert (F1: (0 < BigN.to_Z (BigN.succ dx))%Z). + rewrite BigN.spec_succ; generalize (BigN.spec_pos dx); + auto with zarith. + repeat rewrite Zpos_mult_morphism. + repeat rewrite Z2P_correct; auto. + 2: apply Zpower_pos_pos; auto. + 2: apply Zpower_pos_pos; auto. + rewrite Zpower_pos_is_exp. + rewrite Zpower_pos_1_r; auto. + rewrite F. + apply Qmult_comp; apply Qeq_sym; apply Qred_correct. + Qed. + + +End Qp. |