summaryrefslogtreecommitdiff
path: root/theories/Numbers/NatInt
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2009-02-01 00:54:40 +0100
committerGravatar Stephane Glondu <steph@glondu.net>2009-02-01 00:54:40 +0100
commitcfbfe13f5b515ae2e3c6cdd97e2ccee03bc26e56 (patch)
treeb7832bd5d412a5a5d69cb36ae2ded62c71124c22 /theories/Numbers/NatInt
parent113b703a695acbe31ac6dd6a8c4aa94f6fda7545 (diff)
Imported Upstream version 8.2~rc2+dfsgupstream/8.2.rc2+dfsg
Diffstat (limited to 'theories/Numbers/NatInt')
-rw-r--r--theories/Numbers/NatInt/NZBase.v4
-rw-r--r--theories/Numbers/NatInt/NZOrder.v4
2 files changed, 4 insertions, 4 deletions
diff --git a/theories/Numbers/NatInt/NZBase.v b/theories/Numbers/NatInt/NZBase.v
index 8b01e353..bd4d6232 100644
--- a/theories/Numbers/NatInt/NZBase.v
+++ b/theories/Numbers/NatInt/NZBase.v
@@ -8,14 +8,14 @@
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
-(*i $Id: NZBase.v 10934 2008-05-15 21:58:20Z letouzey $ i*)
+(*i $Id: NZBase.v 11674 2008-12-12 19:48:40Z letouzey $ i*)
Require Import NZAxioms.
Module NZBasePropFunct (Import NZAxiomsMod : NZAxiomsSig).
Open Local Scope NatIntScope.
-Theorem NZneq_symm : forall n m : NZ, n ~= m -> m ~= n.
+Theorem NZneq_sym : forall n m : NZ, n ~= m -> m ~= n.
Proof.
intros n m H1 H2; symmetry in H2; false_hyp H2 H1.
Qed.
diff --git a/theories/Numbers/NatInt/NZOrder.v b/theories/Numbers/NatInt/NZOrder.v
index 15004824..d0e2faf8 100644
--- a/theories/Numbers/NatInt/NZOrder.v
+++ b/theories/Numbers/NatInt/NZOrder.v
@@ -8,7 +8,7 @@
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
-(*i $Id: NZOrder.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+(*i $Id: NZOrder.v 11674 2008-12-12 19:48:40Z letouzey $ i*)
Require Import NZAxioms.
Require Import NZMul.
@@ -118,7 +118,7 @@ Qed.
Theorem NZneq_succ_diag_r : forall n : NZ, n ~= S n.
Proof.
-intro n; apply NZneq_symm; apply NZneq_succ_diag_l.
+intro n; apply NZneq_sym; apply NZneq_succ_diag_l.
Qed.
Theorem NZnlt_succ_diag_l : forall n : NZ, ~ S n < n.