diff options
author | Stephane Glondu <steph@glondu.net> | 2009-02-01 00:54:40 +0100 |
---|---|---|
committer | Stephane Glondu <steph@glondu.net> | 2009-02-01 00:54:40 +0100 |
commit | cfbfe13f5b515ae2e3c6cdd97e2ccee03bc26e56 (patch) | |
tree | b7832bd5d412a5a5d69cb36ae2ded62c71124c22 /theories/Numbers/NatInt | |
parent | 113b703a695acbe31ac6dd6a8c4aa94f6fda7545 (diff) |
Imported Upstream version 8.2~rc2+dfsgupstream/8.2.rc2+dfsg
Diffstat (limited to 'theories/Numbers/NatInt')
-rw-r--r-- | theories/Numbers/NatInt/NZBase.v | 4 | ||||
-rw-r--r-- | theories/Numbers/NatInt/NZOrder.v | 4 |
2 files changed, 4 insertions, 4 deletions
diff --git a/theories/Numbers/NatInt/NZBase.v b/theories/Numbers/NatInt/NZBase.v index 8b01e353..bd4d6232 100644 --- a/theories/Numbers/NatInt/NZBase.v +++ b/theories/Numbers/NatInt/NZBase.v @@ -8,14 +8,14 @@ (* Evgeny Makarov, INRIA, 2007 *) (************************************************************************) -(*i $Id: NZBase.v 10934 2008-05-15 21:58:20Z letouzey $ i*) +(*i $Id: NZBase.v 11674 2008-12-12 19:48:40Z letouzey $ i*) Require Import NZAxioms. Module NZBasePropFunct (Import NZAxiomsMod : NZAxiomsSig). Open Local Scope NatIntScope. -Theorem NZneq_symm : forall n m : NZ, n ~= m -> m ~= n. +Theorem NZneq_sym : forall n m : NZ, n ~= m -> m ~= n. Proof. intros n m H1 H2; symmetry in H2; false_hyp H2 H1. Qed. diff --git a/theories/Numbers/NatInt/NZOrder.v b/theories/Numbers/NatInt/NZOrder.v index 15004824..d0e2faf8 100644 --- a/theories/Numbers/NatInt/NZOrder.v +++ b/theories/Numbers/NatInt/NZOrder.v @@ -8,7 +8,7 @@ (* Evgeny Makarov, INRIA, 2007 *) (************************************************************************) -(*i $Id: NZOrder.v 11040 2008-06-03 00:04:16Z letouzey $ i*) +(*i $Id: NZOrder.v 11674 2008-12-12 19:48:40Z letouzey $ i*) Require Import NZAxioms. Require Import NZMul. @@ -118,7 +118,7 @@ Qed. Theorem NZneq_succ_diag_r : forall n : NZ, n ~= S n. Proof. -intro n; apply NZneq_symm; apply NZneq_succ_diag_l. +intro n; apply NZneq_sym; apply NZneq_succ_diag_l. Qed. Theorem NZnlt_succ_diag_l : forall n : NZ, ~ S n < n. |