diff options
author | Samuel Mimram <smimram@debian.org> | 2008-07-25 15:12:53 +0200 |
---|---|---|
committer | Samuel Mimram <smimram@debian.org> | 2008-07-25 15:12:53 +0200 |
commit | a0cfa4f118023d35b767a999d5a2ac4b082857b4 (patch) | |
tree | dabcac548e299fee1da464c93b3dba98484f45b1 /theories/Numbers/NatInt/NZOrder.v | |
parent | 2281410e38ef99d025ea77194585a9bc019fdaa9 (diff) |
Imported Upstream version 8.2~beta3+dfsgupstream/8.2.beta3+dfsg
Diffstat (limited to 'theories/Numbers/NatInt/NZOrder.v')
-rw-r--r-- | theories/Numbers/NatInt/NZOrder.v | 666 |
1 files changed, 666 insertions, 0 deletions
diff --git a/theories/Numbers/NatInt/NZOrder.v b/theories/Numbers/NatInt/NZOrder.v new file mode 100644 index 00000000..15004824 --- /dev/null +++ b/theories/Numbers/NatInt/NZOrder.v @@ -0,0 +1,666 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) +(* Evgeny Makarov, INRIA, 2007 *) +(************************************************************************) + +(*i $Id: NZOrder.v 11040 2008-06-03 00:04:16Z letouzey $ i*) + +Require Import NZAxioms. +Require Import NZMul. +Require Import Decidable. + +Module NZOrderPropFunct (Import NZOrdAxiomsMod : NZOrdAxiomsSig). +Module Export NZMulPropMod := NZMulPropFunct NZAxiomsMod. +Open Local Scope NatIntScope. + +Ltac le_elim H := rewrite NZlt_eq_cases in H; destruct H as [H | H]. + +Theorem NZlt_le_incl : forall n m : NZ, n < m -> n <= m. +Proof. +intros; apply <- NZlt_eq_cases; now left. +Qed. + +Theorem NZeq_le_incl : forall n m : NZ, n == m -> n <= m. +Proof. +intros; apply <- NZlt_eq_cases; now right. +Qed. + +Lemma NZlt_stepl : forall x y z : NZ, x < y -> x == z -> z < y. +Proof. +intros x y z H1 H2; now rewrite <- H2. +Qed. + +Lemma NZlt_stepr : forall x y z : NZ, x < y -> y == z -> x < z. +Proof. +intros x y z H1 H2; now rewrite <- H2. +Qed. + +Lemma NZle_stepl : forall x y z : NZ, x <= y -> x == z -> z <= y. +Proof. +intros x y z H1 H2; now rewrite <- H2. +Qed. + +Lemma NZle_stepr : forall x y z : NZ, x <= y -> y == z -> x <= z. +Proof. +intros x y z H1 H2; now rewrite <- H2. +Qed. + +Declare Left Step NZlt_stepl. +Declare Right Step NZlt_stepr. +Declare Left Step NZle_stepl. +Declare Right Step NZle_stepr. + +Theorem NZlt_neq : forall n m : NZ, n < m -> n ~= m. +Proof. +intros n m H1 H2; rewrite H2 in H1; false_hyp H1 NZlt_irrefl. +Qed. + +Theorem NZle_neq : forall n m : NZ, n < m <-> n <= m /\ n ~= m. +Proof. +intros n m; split; [intro H | intros [H1 H2]]. +split. now apply NZlt_le_incl. now apply NZlt_neq. +le_elim H1. assumption. false_hyp H1 H2. +Qed. + +Theorem NZle_refl : forall n : NZ, n <= n. +Proof. +intro; now apply NZeq_le_incl. +Qed. + +Theorem NZlt_succ_diag_r : forall n : NZ, n < S n. +Proof. +intro n. rewrite NZlt_succ_r. now apply NZeq_le_incl. +Qed. + +Theorem NZle_succ_diag_r : forall n : NZ, n <= S n. +Proof. +intro; apply NZlt_le_incl; apply NZlt_succ_diag_r. +Qed. + +Theorem NZlt_0_1 : 0 < 1. +Proof. +apply NZlt_succ_diag_r. +Qed. + +Theorem NZle_0_1 : 0 <= 1. +Proof. +apply NZle_succ_diag_r. +Qed. + +Theorem NZlt_lt_succ_r : forall n m : NZ, n < m -> n < S m. +Proof. +intros. rewrite NZlt_succ_r. now apply NZlt_le_incl. +Qed. + +Theorem NZle_le_succ_r : forall n m : NZ, n <= m -> n <= S m. +Proof. +intros n m H. rewrite <- NZlt_succ_r in H. now apply NZlt_le_incl. +Qed. + +Theorem NZle_succ_r : forall n m : NZ, n <= S m <-> n <= m \/ n == S m. +Proof. +intros n m; rewrite NZlt_eq_cases. now rewrite NZlt_succ_r. +Qed. + +(* The following theorem is a special case of neq_succ_iter_l below, +but we prove it separately *) + +Theorem NZneq_succ_diag_l : forall n : NZ, S n ~= n. +Proof. +intros n H. pose proof (NZlt_succ_diag_r n) as H1. rewrite H in H1. +false_hyp H1 NZlt_irrefl. +Qed. + +Theorem NZneq_succ_diag_r : forall n : NZ, n ~= S n. +Proof. +intro n; apply NZneq_symm; apply NZneq_succ_diag_l. +Qed. + +Theorem NZnlt_succ_diag_l : forall n : NZ, ~ S n < n. +Proof. +intros n H; apply NZlt_lt_succ_r in H. false_hyp H NZlt_irrefl. +Qed. + +Theorem NZnle_succ_diag_l : forall n : NZ, ~ S n <= n. +Proof. +intros n H; le_elim H. +false_hyp H NZnlt_succ_diag_l. false_hyp H NZneq_succ_diag_l. +Qed. + +Theorem NZle_succ_l : forall n m : NZ, S n <= m <-> n < m. +Proof. +intro n; NZinduct m n. +setoid_replace (n < n) with False using relation iff by + (apply -> neg_false; apply NZlt_irrefl). +now setoid_replace (S n <= n) with False using relation iff by + (apply -> neg_false; apply NZnle_succ_diag_l). +intro m. rewrite NZlt_succ_r. rewrite NZle_succ_r. +rewrite NZsucc_inj_wd. +rewrite (NZlt_eq_cases n m). +rewrite or_cancel_r. +reflexivity. +intros H1 H2; rewrite H2 in H1; false_hyp H1 NZnle_succ_diag_l. +apply NZlt_neq. +Qed. + +Theorem NZlt_succ_l : forall n m : NZ, S n < m -> n < m. +Proof. +intros n m H; apply -> NZle_succ_l; now apply NZlt_le_incl. +Qed. + +Theorem NZsucc_lt_mono : forall n m : NZ, n < m <-> S n < S m. +Proof. +intros n m. rewrite <- NZle_succ_l. symmetry. apply NZlt_succ_r. +Qed. + +Theorem NZsucc_le_mono : forall n m : NZ, n <= m <-> S n <= S m. +Proof. +intros n m. do 2 rewrite NZlt_eq_cases. +rewrite <- NZsucc_lt_mono; now rewrite NZsucc_inj_wd. +Qed. + +Theorem NZlt_asymm : forall n m, n < m -> ~ m < n. +Proof. +intros n m; NZinduct n m. +intros H _; false_hyp H NZlt_irrefl. +intro n; split; intros H H1 H2. +apply NZlt_succ_l in H1. apply -> NZlt_succ_r in H2. le_elim H2. +now apply H. rewrite H2 in H1; false_hyp H1 NZlt_irrefl. +apply NZlt_lt_succ_r in H2. apply <- NZle_succ_l in H1. le_elim H1. +now apply H. rewrite H1 in H2; false_hyp H2 NZlt_irrefl. +Qed. + +Theorem NZlt_trans : forall n m p : NZ, n < m -> m < p -> n < p. +Proof. +intros n m p; NZinduct p m. +intros _ H; false_hyp H NZlt_irrefl. +intro p. do 2 rewrite NZlt_succ_r. +split; intros H H1 H2. +apply NZlt_le_incl; le_elim H2; [now apply H | now rewrite H2 in H1]. +assert (n <= p) as H3. apply H. assumption. now apply NZlt_le_incl. +le_elim H3. assumption. rewrite <- H3 in H2. +elimtype False; now apply (NZlt_asymm n m). +Qed. + +Theorem NZle_trans : forall n m p : NZ, n <= m -> m <= p -> n <= p. +Proof. +intros n m p H1 H2; le_elim H1. +le_elim H2. apply NZlt_le_incl; now apply NZlt_trans with (m := m). +apply NZlt_le_incl; now rewrite <- H2. now rewrite H1. +Qed. + +Theorem NZle_lt_trans : forall n m p : NZ, n <= m -> m < p -> n < p. +Proof. +intros n m p H1 H2; le_elim H1. +now apply NZlt_trans with (m := m). now rewrite H1. +Qed. + +Theorem NZlt_le_trans : forall n m p : NZ, n < m -> m <= p -> n < p. +Proof. +intros n m p H1 H2; le_elim H2. +now apply NZlt_trans with (m := m). now rewrite <- H2. +Qed. + +Theorem NZle_antisymm : forall n m : NZ, n <= m -> m <= n -> n == m. +Proof. +intros n m H1 H2; now (le_elim H1; le_elim H2); +[elimtype False; apply (NZlt_asymm n m) | | |]. +Qed. + +Theorem NZlt_1_l : forall n m : NZ, 0 < n -> n < m -> 1 < m. +Proof. +intros n m H1 H2. apply <- NZle_succ_l in H1. now apply NZle_lt_trans with n. +Qed. + +(** Trichotomy, decidability, and double negation elimination *) + +Theorem NZlt_trichotomy : forall n m : NZ, n < m \/ n == m \/ m < n. +Proof. +intros n m; NZinduct n m. +right; now left. +intro n; rewrite NZlt_succ_r. stepr ((S n < m \/ S n == m) \/ m <= n) by tauto. +rewrite <- (NZlt_eq_cases (S n) m). +setoid_replace (n == m) with (m == n) using relation iff by now split. +stepl (n < m \/ m < n \/ m == n) by tauto. rewrite <- NZlt_eq_cases. +apply or_iff_compat_r. symmetry; apply NZle_succ_l. +Qed. + +(* Decidability of equality, even though true in each finite ring, does not +have a uniform proof. Otherwise, the proof for two fixed numbers would +reduce to a normal form that will say if the numbers are equal or not, +which cannot be true in all finite rings. Therefore, we prove decidability +in the presence of order. *) + +Theorem NZeq_dec : forall n m : NZ, decidable (n == m). +Proof. +intros n m; destruct (NZlt_trichotomy n m) as [H | [H | H]]. +right; intro H1; rewrite H1 in H; false_hyp H NZlt_irrefl. +now left. +right; intro H1; rewrite H1 in H; false_hyp H NZlt_irrefl. +Qed. + +(* DNE stands for double-negation elimination *) + +Theorem NZeq_dne : forall n m, ~ ~ n == m <-> n == m. +Proof. +intros n m; split; intro H. +destruct (NZeq_dec n m) as [H1 | H1]. +assumption. false_hyp H1 H. +intro H1; now apply H1. +Qed. + +Theorem NZlt_gt_cases : forall n m : NZ, n ~= m <-> n < m \/ n > m. +Proof. +intros n m; split. +pose proof (NZlt_trichotomy n m); tauto. +intros H H1; destruct H as [H | H]; rewrite H1 in H; false_hyp H NZlt_irrefl. +Qed. + +Theorem NZle_gt_cases : forall n m : NZ, n <= m \/ n > m. +Proof. +intros n m; destruct (NZlt_trichotomy n m) as [H | [H | H]]. +left; now apply NZlt_le_incl. left; now apply NZeq_le_incl. now right. +Qed. + +(* The following theorem is cleary redundant, but helps not to +remember whether one has to say le_gt_cases or lt_ge_cases *) + +Theorem NZlt_ge_cases : forall n m : NZ, n < m \/ n >= m. +Proof. +intros n m; destruct (NZle_gt_cases m n); try (now left); try (now right). +Qed. + +Theorem NZle_ge_cases : forall n m : NZ, n <= m \/ n >= m. +Proof. +intros n m; destruct (NZle_gt_cases n m) as [H | H]. +now left. right; now apply NZlt_le_incl. +Qed. + +Theorem NZle_ngt : forall n m : NZ, n <= m <-> ~ n > m. +Proof. +intros n m. split; intro H; [intro H1 |]. +eapply NZle_lt_trans in H; [| eassumption ..]. false_hyp H NZlt_irrefl. +destruct (NZle_gt_cases n m) as [H1 | H1]. +assumption. false_hyp H1 H. +Qed. + +(* Redundant but useful *) + +Theorem NZnlt_ge : forall n m : NZ, ~ n < m <-> n >= m. +Proof. +intros n m; symmetry; apply NZle_ngt. +Qed. + +Theorem NZlt_dec : forall n m : NZ, decidable (n < m). +Proof. +intros n m; destruct (NZle_gt_cases m n); +[right; now apply -> NZle_ngt | now left]. +Qed. + +Theorem NZlt_dne : forall n m, ~ ~ n < m <-> n < m. +Proof. +intros n m; split; intro H; +[destruct (NZlt_dec n m) as [H1 | H1]; [assumption | false_hyp H1 H] | +intro H1; false_hyp H H1]. +Qed. + +Theorem NZnle_gt : forall n m : NZ, ~ n <= m <-> n > m. +Proof. +intros n m. rewrite NZle_ngt. apply NZlt_dne. +Qed. + +(* Redundant but useful *) + +Theorem NZlt_nge : forall n m : NZ, n < m <-> ~ n >= m. +Proof. +intros n m; symmetry; apply NZnle_gt. +Qed. + +Theorem NZle_dec : forall n m : NZ, decidable (n <= m). +Proof. +intros n m; destruct (NZle_gt_cases n m); +[now left | right; now apply <- NZnle_gt]. +Qed. + +Theorem NZle_dne : forall n m : NZ, ~ ~ n <= m <-> n <= m. +Proof. +intros n m; split; intro H; +[destruct (NZle_dec n m) as [H1 | H1]; [assumption | false_hyp H1 H] | +intro H1; false_hyp H H1]. +Qed. + +Theorem NZnlt_succ_r : forall n m : NZ, ~ m < S n <-> n < m. +Proof. +intros n m; rewrite NZlt_succ_r; apply NZnle_gt. +Qed. + +(* The difference between integers and natural numbers is that for +every integer there is a predecessor, which is not true for natural +numbers. However, for both classes, every number that is bigger than +some other number has a predecessor. The proof of this fact by regular +induction does not go through, so we need to use strong +(course-of-value) induction. *) + +Lemma NZlt_exists_pred_strong : + forall z n m : NZ, z < m -> m <= n -> exists k : NZ, m == S k /\ z <= k. +Proof. +intro z; NZinduct n z. +intros m H1 H2; apply <- NZnle_gt in H1; false_hyp H2 H1. +intro n; split; intros IH m H1 H2. +apply -> NZle_succ_r in H2; destruct H2 as [H2 | H2]. +now apply IH. exists n. now split; [| rewrite <- NZlt_succ_r; rewrite <- H2]. +apply IH. assumption. now apply NZle_le_succ_r. +Qed. + +Theorem NZlt_exists_pred : + forall z n : NZ, z < n -> exists k : NZ, n == S k /\ z <= k. +Proof. +intros z n H; apply NZlt_exists_pred_strong with (z := z) (n := n). +assumption. apply NZle_refl. +Qed. + +(** A corollary of having an order is that NZ is infinite *) + +(* This section about infinity of NZ relies on the type nat and can be +safely removed *) + +Definition NZsucc_iter (n : nat) (m : NZ) := + nat_rect (fun _ => NZ) m (fun _ l => S l) n. + +Theorem NZlt_succ_iter_r : + forall (n : nat) (m : NZ), m < NZsucc_iter (Datatypes.S n) m. +Proof. +intros n m; induction n as [| n IH]; simpl in *. +apply NZlt_succ_diag_r. now apply NZlt_lt_succ_r. +Qed. + +Theorem NZneq_succ_iter_l : + forall (n : nat) (m : NZ), NZsucc_iter (Datatypes.S n) m ~= m. +Proof. +intros n m H. pose proof (NZlt_succ_iter_r n m) as H1. rewrite H in H1. +false_hyp H1 NZlt_irrefl. +Qed. + +(* End of the section about the infinity of NZ *) + +(** Stronger variant of induction with assumptions n >= 0 (n < 0) +in the induction step *) + +Section Induction. + +Variable A : NZ -> Prop. +Hypothesis A_wd : predicate_wd NZeq A. + +Add Morphism A with signature NZeq ==> iff as A_morph. +Proof. apply A_wd. Qed. + +Section Center. + +Variable z : NZ. (* A z is the basis of induction *) + +Section RightInduction. + +Let A' (n : NZ) := forall m : NZ, z <= m -> m < n -> A m. +Let right_step := forall n : NZ, z <= n -> A n -> A (S n). +Let right_step' := forall n : NZ, z <= n -> A' n -> A n. +Let right_step'' := forall n : NZ, A' n <-> A' (S n). + +Lemma NZrs_rs' : A z -> right_step -> right_step'. +Proof. +intros Az RS n H1 H2. +le_elim H1. apply NZlt_exists_pred in H1. destruct H1 as [k [H3 H4]]. +rewrite H3. apply RS; [assumption | apply H2; [assumption | rewrite H3; apply NZlt_succ_diag_r]]. +rewrite <- H1; apply Az. +Qed. + +Lemma NZrs'_rs'' : right_step' -> right_step''. +Proof. +intros RS' n; split; intros H1 m H2 H3. +apply -> NZlt_succ_r in H3; le_elim H3; +[now apply H1 | rewrite H3 in *; now apply RS']. +apply H1; [assumption | now apply NZlt_lt_succ_r]. +Qed. + +Lemma NZrbase : A' z. +Proof. +intros m H1 H2. apply -> NZle_ngt in H1. false_hyp H2 H1. +Qed. + +Lemma NZA'A_right : (forall n : NZ, A' n) -> forall n : NZ, z <= n -> A n. +Proof. +intros H1 n H2. apply H1 with (n := S n); [assumption | apply NZlt_succ_diag_r]. +Qed. + +Theorem NZstrong_right_induction: right_step' -> forall n : NZ, z <= n -> A n. +Proof. +intro RS'; apply NZA'A_right; unfold A'; NZinduct n z; +[apply NZrbase | apply NZrs'_rs''; apply RS']. +Qed. + +Theorem NZright_induction : A z -> right_step -> forall n : NZ, z <= n -> A n. +Proof. +intros Az RS; apply NZstrong_right_induction; now apply NZrs_rs'. +Qed. + +Theorem NZright_induction' : + (forall n : NZ, n <= z -> A n) -> right_step -> forall n : NZ, A n. +Proof. +intros L R n. +destruct (NZlt_trichotomy n z) as [H | [H | H]]. +apply L; now apply NZlt_le_incl. +apply L; now apply NZeq_le_incl. +apply NZright_induction. apply L; now apply NZeq_le_incl. assumption. now apply NZlt_le_incl. +Qed. + +Theorem NZstrong_right_induction' : + (forall n : NZ, n <= z -> A n) -> right_step' -> forall n : NZ, A n. +Proof. +intros L R n. +destruct (NZlt_trichotomy n z) as [H | [H | H]]. +apply L; now apply NZlt_le_incl. +apply L; now apply NZeq_le_incl. +apply NZstrong_right_induction. assumption. now apply NZlt_le_incl. +Qed. + +End RightInduction. + +Section LeftInduction. + +Let A' (n : NZ) := forall m : NZ, m <= z -> n <= m -> A m. +Let left_step := forall n : NZ, n < z -> A (S n) -> A n. +Let left_step' := forall n : NZ, n <= z -> A' (S n) -> A n. +Let left_step'' := forall n : NZ, A' n <-> A' (S n). + +Lemma NZls_ls' : A z -> left_step -> left_step'. +Proof. +intros Az LS n H1 H2. le_elim H1. +apply LS; [assumption | apply H2; [now apply <- NZle_succ_l | now apply NZeq_le_incl]]. +rewrite H1; apply Az. +Qed. + +Lemma NZls'_ls'' : left_step' -> left_step''. +Proof. +intros LS' n; split; intros H1 m H2 H3. +apply -> NZle_succ_l in H3. apply NZlt_le_incl in H3. now apply H1. +le_elim H3. +apply <- NZle_succ_l in H3. now apply H1. +rewrite <- H3 in *; now apply LS'. +Qed. + +Lemma NZlbase : A' (S z). +Proof. +intros m H1 H2. apply -> NZle_succ_l in H2. +apply -> NZle_ngt in H1. false_hyp H2 H1. +Qed. + +Lemma NZA'A_left : (forall n : NZ, A' n) -> forall n : NZ, n <= z -> A n. +Proof. +intros H1 n H2. apply H1 with (n := n); [assumption | now apply NZeq_le_incl]. +Qed. + +Theorem NZstrong_left_induction: left_step' -> forall n : NZ, n <= z -> A n. +Proof. +intro LS'; apply NZA'A_left; unfold A'; NZinduct n (S z); +[apply NZlbase | apply NZls'_ls''; apply LS']. +Qed. + +Theorem NZleft_induction : A z -> left_step -> forall n : NZ, n <= z -> A n. +Proof. +intros Az LS; apply NZstrong_left_induction; now apply NZls_ls'. +Qed. + +Theorem NZleft_induction' : + (forall n : NZ, z <= n -> A n) -> left_step -> forall n : NZ, A n. +Proof. +intros R L n. +destruct (NZlt_trichotomy n z) as [H | [H | H]]. +apply NZleft_induction. apply R. now apply NZeq_le_incl. assumption. now apply NZlt_le_incl. +rewrite H; apply R; now apply NZeq_le_incl. +apply R; now apply NZlt_le_incl. +Qed. + +Theorem NZstrong_left_induction' : + (forall n : NZ, z <= n -> A n) -> left_step' -> forall n : NZ, A n. +Proof. +intros R L n. +destruct (NZlt_trichotomy n z) as [H | [H | H]]. +apply NZstrong_left_induction; auto. now apply NZlt_le_incl. +rewrite H; apply R; now apply NZeq_le_incl. +apply R; now apply NZlt_le_incl. +Qed. + +End LeftInduction. + +Theorem NZorder_induction : + A z -> + (forall n : NZ, z <= n -> A n -> A (S n)) -> + (forall n : NZ, n < z -> A (S n) -> A n) -> + forall n : NZ, A n. +Proof. +intros Az RS LS n. +destruct (NZlt_trichotomy n z) as [H | [H | H]]. +now apply NZleft_induction; [| | apply NZlt_le_incl]. +now rewrite H. +now apply NZright_induction; [| | apply NZlt_le_incl]. +Qed. + +Theorem NZorder_induction' : + A z -> + (forall n : NZ, z <= n -> A n -> A (S n)) -> + (forall n : NZ, n <= z -> A n -> A (P n)) -> + forall n : NZ, A n. +Proof. +intros Az AS AP n; apply NZorder_induction; try assumption. +intros m H1 H2. apply AP in H2; [| now apply <- NZle_succ_l]. +unfold predicate_wd, fun_wd in A_wd; apply -> (A_wd (P (S m)) m); +[assumption | apply NZpred_succ]. +Qed. + +End Center. + +Theorem NZorder_induction_0 : + A 0 -> + (forall n : NZ, 0 <= n -> A n -> A (S n)) -> + (forall n : NZ, n < 0 -> A (S n) -> A n) -> + forall n : NZ, A n. +Proof (NZorder_induction 0). + +Theorem NZorder_induction'_0 : + A 0 -> + (forall n : NZ, 0 <= n -> A n -> A (S n)) -> + (forall n : NZ, n <= 0 -> A n -> A (P n)) -> + forall n : NZ, A n. +Proof (NZorder_induction' 0). + +(** Elimintation principle for < *) + +Theorem NZlt_ind : forall (n : NZ), + A (S n) -> + (forall m : NZ, n < m -> A m -> A (S m)) -> + forall m : NZ, n < m -> A m. +Proof. +intros n H1 H2 m H3. +apply NZright_induction with (S n); [assumption | | now apply <- NZle_succ_l]. +intros; apply H2; try assumption. now apply -> NZle_succ_l. +Qed. + +(** Elimintation principle for <= *) + +Theorem NZle_ind : forall (n : NZ), + A n -> + (forall m : NZ, n <= m -> A m -> A (S m)) -> + forall m : NZ, n <= m -> A m. +Proof. +intros n H1 H2 m H3. +now apply NZright_induction with n. +Qed. + +End Induction. + +Tactic Notation "NZord_induct" ident(n) := + induction_maker n ltac:(apply NZorder_induction_0). + +Tactic Notation "NZord_induct" ident(n) constr(z) := + induction_maker n ltac:(apply NZorder_induction with z). + +Section WF. + +Variable z : NZ. + +Let Rlt (n m : NZ) := z <= n /\ n < m. +Let Rgt (n m : NZ) := m < n /\ n <= z. + +Add Morphism Rlt with signature NZeq ==> NZeq ==> iff as Rlt_wd. +Proof. +intros x1 x2 H1 x3 x4 H2; unfold Rlt; rewrite H1; now rewrite H2. +Qed. + +Add Morphism Rgt with signature NZeq ==> NZeq ==> iff as Rgt_wd. +Proof. +intros x1 x2 H1 x3 x4 H2; unfold Rgt; rewrite H1; now rewrite H2. +Qed. + +Lemma NZAcc_lt_wd : predicate_wd NZeq (Acc Rlt). +Proof. +unfold predicate_wd, fun_wd. +intros x1 x2 H; split; intro H1; destruct H1 as [H2]; +constructor; intros; apply H2; now (rewrite H || rewrite <- H). +Qed. + +Lemma NZAcc_gt_wd : predicate_wd NZeq (Acc Rgt). +Proof. +unfold predicate_wd, fun_wd. +intros x1 x2 H; split; intro H1; destruct H1 as [H2]; +constructor; intros; apply H2; now (rewrite H || rewrite <- H). +Qed. + +Theorem NZlt_wf : well_founded Rlt. +Proof. +unfold well_founded. +apply NZstrong_right_induction' with (z := z). +apply NZAcc_lt_wd. +intros n H; constructor; intros y [H1 H2]. +apply <- NZnle_gt in H2. elim H2. now apply NZle_trans with z. +intros n H1 H2; constructor; intros m [H3 H4]. now apply H2. +Qed. + +Theorem NZgt_wf : well_founded Rgt. +Proof. +unfold well_founded. +apply NZstrong_left_induction' with (z := z). +apply NZAcc_gt_wd. +intros n H; constructor; intros y [H1 H2]. +apply <- NZnle_gt in H2. elim H2. now apply NZle_lt_trans with n. +intros n H1 H2; constructor; intros m [H3 H4]. +apply H2. assumption. now apply <- NZle_succ_l. +Qed. + +End WF. + +End NZOrderPropFunct. + |