diff options
author | Stephane Glondu <steph@glondu.net> | 2012-01-12 16:02:20 +0100 |
---|---|---|
committer | Stephane Glondu <steph@glondu.net> | 2012-01-12 16:02:20 +0100 |
commit | 97fefe1fcca363a1317e066e7f4b99b9c1e9987b (patch) | |
tree | 97ec6b7d831cc5fb66328b0c63a11db1cbb2f158 /theories/Numbers/NatInt/NZLog.v | |
parent | 300293c119981054c95182a90c829058530a6b6f (diff) |
Imported Upstream version 8.4~betaupstream/8.4_beta
Diffstat (limited to 'theories/Numbers/NatInt/NZLog.v')
-rw-r--r-- | theories/Numbers/NatInt/NZLog.v | 889 |
1 files changed, 889 insertions, 0 deletions
diff --git a/theories/Numbers/NatInt/NZLog.v b/theories/Numbers/NatInt/NZLog.v new file mode 100644 index 00000000..a5aa6d8a --- /dev/null +++ b/theories/Numbers/NatInt/NZLog.v @@ -0,0 +1,889 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(** Base-2 Logarithm *) + +Require Import NZAxioms NZMulOrder NZPow. + +(** Interface of a log2 function, then its specification on naturals *) + +Module Type Log2 (Import A : Typ). + Parameter Inline log2 : t -> t. +End Log2. + +Module Type NZLog2Spec (A : NZOrdAxiomsSig')(B : Pow' A)(C : Log2 A). + Import A B C. + Axiom log2_spec : forall a, 0<a -> 2^(log2 a) <= a < 2^(S (log2 a)). + Axiom log2_nonpos : forall a, a<=0 -> log2 a == 0. +End NZLog2Spec. + +Module Type NZLog2 (A : NZOrdAxiomsSig)(B : Pow A) := Log2 A <+ NZLog2Spec A B. + +(** Derived properties of logarithm *) + +Module Type NZLog2Prop + (Import A : NZOrdAxiomsSig') + (Import B : NZPow' A) + (Import C : NZLog2 A B) + (Import D : NZMulOrderProp A) + (Import E : NZPowProp A B D). + +(** log2 is always non-negative *) + +Lemma log2_nonneg : forall a, 0 <= log2 a. +Proof. + intros a. destruct (le_gt_cases a 0) as [Ha|Ha]. + now rewrite log2_nonpos. + destruct (log2_spec a Ha) as (_,LT). + apply lt_succ_r, (pow_gt_1 2). order'. + rewrite <- le_succ_l, <- one_succ in Ha. order. +Qed. + +(** A tactic for proving positivity and non-negativity *) + +Ltac order_pos := +((apply add_pos_pos || apply add_nonneg_nonneg || + apply mul_pos_pos || apply mul_nonneg_nonneg || + apply pow_nonneg || apply pow_pos_nonneg || + apply log2_nonneg || apply (le_le_succ_r 0)); + order_pos) (* in case of success of an apply, we recurse *) +|| order'. (* otherwise *) + +(** The spec of log2 indeed determines it *) + +Lemma log2_unique : forall a b, 0<=b -> 2^b<=a<2^(S b) -> log2 a == b. +Proof. + intros a b Hb (LEb,LTb). + assert (Ha : 0 < a). + apply lt_le_trans with (2^b); trivial. + apply pow_pos_nonneg; order'. + assert (Hc := log2_nonneg a). + destruct (log2_spec a Ha) as (LEc,LTc). + assert (log2 a <= b). + apply lt_succ_r, (pow_lt_mono_r_iff 2); try order'. + now apply le_le_succ_r. + assert (b <= log2 a). + apply lt_succ_r, (pow_lt_mono_r_iff 2); try order'. + now apply le_le_succ_r. + order. +Qed. + +(** Hence log2 is a morphism. *) + +Instance log2_wd : Proper (eq==>eq) log2. +Proof. + intros x x' Hx. + destruct (le_gt_cases x 0). + rewrite 2 log2_nonpos; trivial. reflexivity. now rewrite <- Hx. + apply log2_unique. apply log2_nonneg. + rewrite Hx in *. now apply log2_spec. +Qed. + +(** An alternate specification *) + +Lemma log2_spec_alt : forall a, 0<a -> exists r, + a == 2^(log2 a) + r /\ 0 <= r < 2^(log2 a). +Proof. + intros a Ha. + destruct (log2_spec _ Ha) as (LE,LT). + destruct (le_exists_sub _ _ LE) as (r & Hr & Hr'). + exists r. + split. now rewrite add_comm. + split. trivial. + apply (add_lt_mono_r _ _ (2^log2 a)). + rewrite <- Hr. generalize LT. + rewrite pow_succ_r by order_pos. + rewrite two_succ at 1. now nzsimpl. +Qed. + +Lemma log2_unique' : forall a b c, 0<=b -> 0<=c<2^b -> + a == 2^b + c -> log2 a == b. +Proof. + intros a b c Hb (Hc,H) EQ. + apply log2_unique. trivial. + rewrite EQ. + split. + rewrite <- add_0_r at 1. now apply add_le_mono_l. + rewrite pow_succ_r by order. + rewrite two_succ at 2. nzsimpl. now apply add_lt_mono_l. +Qed. + +(** log2 is exact on powers of 2 *) + +Lemma log2_pow2 : forall a, 0<=a -> log2 (2^a) == a. +Proof. + intros a Ha. + apply log2_unique' with 0; trivial. + split; order_pos. now nzsimpl. +Qed. + +(** log2 and predecessors of powers of 2 *) + +Lemma log2_pred_pow2 : forall a, 0<a -> log2 (P (2^a)) == P a. +Proof. + intros a Ha. + assert (Ha' : S (P a) == a) by (now rewrite lt_succ_pred with 0). + apply log2_unique. + apply lt_succ_r; order. + rewrite <-le_succ_l, <-lt_succ_r, Ha'. + rewrite lt_succ_pred with 0. + split; try easy. apply pow_lt_mono_r_iff; try order'. + rewrite succ_lt_mono, Ha'. apply lt_succ_diag_r. + apply pow_pos_nonneg; order'. +Qed. + +(** log2 and basic constants *) + +Lemma log2_1 : log2 1 == 0. +Proof. + rewrite <- (pow_0_r 2). now apply log2_pow2. +Qed. + +Lemma log2_2 : log2 2 == 1. +Proof. + rewrite <- (pow_1_r 2). apply log2_pow2; order'. +Qed. + +(** log2 n is strictly positive for 1<n *) + +Lemma log2_pos : forall a, 1<a -> 0 < log2 a. +Proof. + intros a Ha. + assert (Ha' : 0 < a) by order'. + assert (H := log2_nonneg a). le_elim H; trivial. + generalize (log2_spec a Ha'). rewrite <- H in *. nzsimpl; try order. + intros (_,H'). rewrite two_succ in H'. apply lt_succ_r in H'; order. +Qed. + +(** Said otherwise, log2 is null only below 1 *) + +Lemma log2_null : forall a, log2 a == 0 <-> a <= 1. +Proof. + intros a. split; intros H. + destruct (le_gt_cases a 1) as [Ha|Ha]; trivial. + generalize (log2_pos a Ha); order. + le_elim H. + apply log2_nonpos. apply lt_succ_r. now rewrite <- one_succ. + rewrite H. apply log2_1. +Qed. + +(** log2 is a monotone function (but not a strict one) *) + +Lemma log2_le_mono : forall a b, a<=b -> log2 a <= log2 b. +Proof. + intros a b H. + destruct (le_gt_cases a 0) as [Ha|Ha]. + rewrite log2_nonpos; order_pos. + assert (Hb : 0 < b) by order. + destruct (log2_spec a Ha) as (LEa,_). + destruct (log2_spec b Hb) as (_,LTb). + apply lt_succ_r, (pow_lt_mono_r_iff 2); order_pos. +Qed. + +(** No reverse result for <=, consider for instance log2 3 <= log2 2 *) + +Lemma log2_lt_cancel : forall a b, log2 a < log2 b -> a < b. +Proof. + intros a b H. + destruct (le_gt_cases b 0) as [Hb|Hb]. + rewrite (log2_nonpos b) in H; trivial. + generalize (log2_nonneg a); order. + destruct (le_gt_cases a 0) as [Ha|Ha]. order. + destruct (log2_spec a Ha) as (_,LTa). + destruct (log2_spec b Hb) as (LEb,_). + apply le_succ_l in H. + apply (pow_le_mono_r_iff 2) in H; order_pos. +Qed. + +(** When left side is a power of 2, we have an equivalence for <= *) + +Lemma log2_le_pow2 : forall a b, 0<a -> (2^b<=a <-> b <= log2 a). +Proof. + intros a b Ha. + split; intros H. + destruct (lt_ge_cases b 0) as [Hb|Hb]. + generalize (log2_nonneg a); order. + rewrite <- (log2_pow2 b); trivial. now apply log2_le_mono. + transitivity (2^(log2 a)). + apply pow_le_mono_r; order'. + now destruct (log2_spec a Ha). +Qed. + +(** When right side is a square, we have an equivalence for < *) + +Lemma log2_lt_pow2 : forall a b, 0<a -> (a<2^b <-> log2 a < b). +Proof. + intros a b Ha. + split; intros H. + destruct (lt_ge_cases b 0) as [Hb|Hb]. + rewrite pow_neg_r in H; order. + apply (pow_lt_mono_r_iff 2); try order_pos. + apply le_lt_trans with a; trivial. + now destruct (log2_spec a Ha). + destruct (lt_ge_cases b 0) as [Hb|Hb]. + generalize (log2_nonneg a); order. + apply log2_lt_cancel; try order. + now rewrite log2_pow2. +Qed. + +(** Comparing log2 and identity *) + +Lemma log2_lt_lin : forall a, 0<a -> log2 a < a. +Proof. + intros a Ha. + apply (pow_lt_mono_r_iff 2); try order_pos. + apply le_lt_trans with a. + now destruct (log2_spec a Ha). + apply pow_gt_lin_r; order'. +Qed. + +Lemma log2_le_lin : forall a, 0<=a -> log2 a <= a. +Proof. + intros a Ha. + le_elim Ha. + now apply lt_le_incl, log2_lt_lin. + rewrite <- Ha, log2_nonpos; order. +Qed. + +(** Log2 and multiplication. *) + +(** Due to rounding error, we don't have the usual + [log2 (a*b) = log2 a + log2 b] but we may be off by 1 at most *) + +Lemma log2_mul_below : forall a b, 0<a -> 0<b -> + log2 a + log2 b <= log2 (a*b). +Proof. + intros a b Ha Hb. + apply log2_le_pow2; try order_pos. + rewrite pow_add_r by order_pos. + apply mul_le_mono_nonneg; try apply log2_spec; order_pos. +Qed. + +Lemma log2_mul_above : forall a b, 0<=a -> 0<=b -> + log2 (a*b) <= log2 a + log2 b + 1. +Proof. + intros a b Ha Hb. + le_elim Ha. + le_elim Hb. + apply lt_succ_r. + rewrite add_1_r, <- add_succ_r, <- add_succ_l. + apply log2_lt_pow2; try order_pos. + rewrite pow_add_r by order_pos. + apply mul_lt_mono_nonneg; try order; now apply log2_spec. + rewrite <- Hb. nzsimpl. rewrite log2_nonpos; order_pos. + rewrite <- Ha. nzsimpl. rewrite log2_nonpos; order_pos. +Qed. + +(** And we can't find better approximations in general. + - The lower bound is exact for powers of 2. + - Concerning the upper bound, for any c>1, take a=b=2^c-1, + then log2 (a*b) = c+c -1 while (log2 a) = (log2 b) = c-1 +*) + +(** At least, we get back the usual equation when we multiply by 2 (or 2^k) *) + +Lemma log2_mul_pow2 : forall a b, 0<a -> 0<=b -> log2 (a*2^b) == b + log2 a. +Proof. + intros a b Ha Hb. + apply log2_unique; try order_pos. split. + rewrite pow_add_r, mul_comm; try order_pos. + apply mul_le_mono_nonneg_r. order_pos. now apply log2_spec. + rewrite <-add_succ_r, pow_add_r, mul_comm; try order_pos. + apply mul_lt_mono_pos_l. order_pos. now apply log2_spec. +Qed. + +Lemma log2_double : forall a, 0<a -> log2 (2*a) == S (log2 a). +Proof. + intros a Ha. generalize (log2_mul_pow2 a 1 Ha le_0_1). now nzsimpl'. +Qed. + +(** Two numbers with same log2 cannot be far away. *) + +Lemma log2_same : forall a b, 0<a -> 0<b -> log2 a == log2 b -> a < 2*b. +Proof. + intros a b Ha Hb H. + apply log2_lt_cancel. rewrite log2_double, H by trivial. + apply lt_succ_diag_r. +Qed. + +(** Log2 and successor : + - the log2 function climbs by at most 1 at a time + - otherwise it stays at the same value + - the +1 steps occur for powers of two +*) + +Lemma log2_succ_le : forall a, log2 (S a) <= S (log2 a). +Proof. + intros a. + destruct (lt_trichotomy 0 a) as [LT|[EQ|LT]]. + apply (pow_le_mono_r_iff 2); try order_pos. + transitivity (S a). + apply log2_spec. + apply lt_succ_r; order. + now apply le_succ_l, log2_spec. + rewrite <- EQ, <- one_succ, log2_1; order_pos. + rewrite 2 log2_nonpos. order_pos. order'. now rewrite le_succ_l. +Qed. + +Lemma log2_succ_or : forall a, + log2 (S a) == S (log2 a) \/ log2 (S a) == log2 a. +Proof. + intros. + destruct (le_gt_cases (log2 (S a)) (log2 a)) as [H|H]. + right. generalize (log2_le_mono _ _ (le_succ_diag_r a)); order. + left. apply le_succ_l in H. generalize (log2_succ_le a); order. +Qed. + +Lemma log2_eq_succ_is_pow2 : forall a, + log2 (S a) == S (log2 a) -> exists b, S a == 2^b. +Proof. + intros a H. + destruct (le_gt_cases a 0) as [Ha|Ha]. + rewrite 2 (proj2 (log2_null _)) in H. generalize (lt_succ_diag_r 0); order. + order'. apply le_succ_l. order'. + assert (Ha' : 0 < S a) by (apply lt_succ_r; order). + exists (log2 (S a)). + generalize (proj1 (log2_spec (S a) Ha')) (proj2 (log2_spec a Ha)). + rewrite <- le_succ_l, <- H. order. +Qed. + +Lemma log2_eq_succ_iff_pow2 : forall a, 0<a -> + (log2 (S a) == S (log2 a) <-> exists b, S a == 2^b). +Proof. + intros a Ha. + split. apply log2_eq_succ_is_pow2. + intros (b,Hb). + assert (Hb' : 0 < b). + apply (pow_gt_1 2); try order'; now rewrite <- Hb, one_succ, <- succ_lt_mono. + rewrite Hb, log2_pow2; try order'. + setoid_replace a with (P (2^b)). rewrite log2_pred_pow2; trivial. + symmetry; now apply lt_succ_pred with 0. + apply succ_inj. rewrite Hb. symmetry. apply lt_succ_pred with 0. + rewrite <- Hb, lt_succ_r; order. +Qed. + +Lemma log2_succ_double : forall a, 0<a -> log2 (2*a+1) == S (log2 a). +Proof. + intros a Ha. + rewrite add_1_r. + destruct (log2_succ_or (2*a)) as [H|H]; [exfalso|now rewrite H, log2_double]. + apply log2_eq_succ_is_pow2 in H. destruct H as (b,H). + destruct (lt_trichotomy b 0) as [LT|[EQ|LT]]. + rewrite pow_neg_r in H; trivial. + apply (mul_pos_pos 2), succ_lt_mono in Ha; try order'. + rewrite <- one_succ in Ha. order'. + rewrite EQ, pow_0_r in H. + apply (mul_pos_pos 2), succ_lt_mono in Ha; try order'. + rewrite <- one_succ in Ha. order'. + assert (EQ:=lt_succ_pred 0 b LT). + rewrite <- EQ, pow_succ_r in H; [|now rewrite <- lt_succ_r, EQ]. + destruct (lt_ge_cases a (2^(P b))) as [LT'|LE']. + generalize (mul_2_mono_l _ _ LT'). rewrite add_1_l. order. + rewrite (mul_le_mono_pos_l _ _ 2) in LE'; try order'. + rewrite <- H in LE'. apply le_succ_l in LE'. order. +Qed. + +(** Log2 and addition *) + +Lemma log2_add_le : forall a b, a~=1 -> b~=1 -> log2 (a+b) <= log2 a + log2 b. +Proof. + intros a b Ha Hb. + destruct (lt_trichotomy a 1) as [Ha'|[Ha'|Ha']]; [|order|]. + rewrite one_succ, lt_succ_r in Ha'. + rewrite (log2_nonpos a); trivial. nzsimpl. apply log2_le_mono. + rewrite <- (add_0_l b) at 2. now apply add_le_mono. + destruct (lt_trichotomy b 1) as [Hb'|[Hb'|Hb']]; [|order|]. + rewrite one_succ, lt_succ_r in Hb'. + rewrite (log2_nonpos b); trivial. nzsimpl. apply log2_le_mono. + rewrite <- (add_0_r a) at 2. now apply add_le_mono. + clear Ha Hb. + apply lt_succ_r. + apply log2_lt_pow2; try order_pos. + rewrite pow_succ_r by order_pos. + rewrite two_succ, one_succ at 1. nzsimpl. + apply add_lt_mono. + apply lt_le_trans with (2^(S (log2 a))). apply log2_spec; order'. + apply pow_le_mono_r. order'. rewrite <- add_1_r. apply add_le_mono_l. + rewrite one_succ; now apply le_succ_l, log2_pos. + apply lt_le_trans with (2^(S (log2 b))). apply log2_spec; order'. + apply pow_le_mono_r. order'. rewrite <- add_1_l. apply add_le_mono_r. + rewrite one_succ; now apply le_succ_l, log2_pos. +Qed. + +(** The sum of two log2 is less than twice the log2 of the sum. + The large inequality is obvious thanks to monotonicity. + The strict one requires some more work. This is almost + a convexity inequality for points [2a], [2b] and their middle [a+b] : + ideally, we would have [2*log(a+b) >= log(2a)+log(2b) = 2+log a+log b]. + Here, we cannot do better: consider for instance a=2 b=4, then 1+2<2*2 +*) + +Lemma add_log2_lt : forall a b, 0<a -> 0<b -> + log2 a + log2 b < 2 * log2 (a+b). +Proof. + intros a b Ha Hb. nzsimpl'. + assert (H : log2 a <= log2 (a+b)). + apply log2_le_mono. rewrite <- (add_0_r a) at 1. apply add_le_mono; order. + assert (H' : log2 b <= log2 (a+b)). + apply log2_le_mono. rewrite <- (add_0_l b) at 1. apply add_le_mono; order. + le_elim H. + apply lt_le_trans with (log2 (a+b) + log2 b). + now apply add_lt_mono_r. now apply add_le_mono_l. + rewrite <- H at 1. apply add_lt_mono_l. + le_elim H'; trivial. + symmetry in H. apply log2_same in H; try order_pos. + symmetry in H'. apply log2_same in H'; try order_pos. + revert H H'. nzsimpl'. rewrite <- add_lt_mono_l, <- add_lt_mono_r; order. +Qed. + +End NZLog2Prop. + +Module NZLog2UpProp + (Import A : NZDecOrdAxiomsSig') + (Import B : NZPow' A) + (Import C : NZLog2 A B) + (Import D : NZMulOrderProp A) + (Import E : NZPowProp A B D) + (Import F : NZLog2Prop A B C D E). + +(** * [log2_up] : a binary logarithm that rounds up instead of down *) + +(** For once, we define instead of axiomatizing, thanks to log2 *) + +Definition log2_up a := + match compare 1 a with + | Lt => S (log2 (P a)) + | _ => 0 + end. + +Lemma log2_up_eqn0 : forall a, a<=1 -> log2_up a == 0. +Proof. + intros a Ha. unfold log2_up. case compare_spec; try order. +Qed. + +Lemma log2_up_eqn : forall a, 1<a -> log2_up a == S (log2 (P a)). +Proof. + intros a Ha. unfold log2_up. case compare_spec; try order. +Qed. + +Lemma log2_up_spec : forall a, 1<a -> + 2^(P (log2_up a)) < a <= 2^(log2_up a). +Proof. + intros a Ha. + rewrite log2_up_eqn; trivial. + rewrite pred_succ. + rewrite <- (lt_succ_pred 1 a Ha) at 2 3. + rewrite lt_succ_r, le_succ_l. + apply log2_spec. + apply succ_lt_mono. now rewrite (lt_succ_pred 1 a Ha), <- one_succ. +Qed. + +Lemma log2_up_nonpos : forall a, a<=0 -> log2_up a == 0. +Proof. + intros. apply log2_up_eqn0. order'. +Qed. + +Instance log2_up_wd : Proper (eq==>eq) log2_up. +Proof. + assert (Proper (eq==>eq==>Logic.eq) compare). + repeat red; intros; do 2 case compare_spec; trivial; order. + intros a a' Ha. unfold log2_up. rewrite Ha at 1. + case compare; now rewrite ?Ha. +Qed. + +(** [log2_up] is always non-negative *) + +Lemma log2_up_nonneg : forall a, 0 <= log2_up a. +Proof. + intros a. unfold log2_up. case compare_spec; try order. + intros. apply le_le_succ_r, log2_nonneg. +Qed. + +(** The spec of [log2_up] indeed determines it *) + +Lemma log2_up_unique : forall a b, 0<b -> 2^(P b)<a<=2^b -> log2_up a == b. +Proof. + intros a b Hb (LEb,LTb). + assert (Ha : 1 < a). + apply le_lt_trans with (2^(P b)); trivial. + rewrite one_succ. apply le_succ_l. + apply pow_pos_nonneg. order'. apply lt_succ_r. + now rewrite (lt_succ_pred 0 b Hb). + assert (Hc := log2_up_nonneg a). + destruct (log2_up_spec a Ha) as (LTc,LEc). + assert (b <= log2_up a). + apply lt_succ_r. rewrite <- (lt_succ_pred 0 b Hb). + rewrite <- succ_lt_mono. + apply (pow_lt_mono_r_iff 2); try order'. + assert (Hc' : 0 < log2_up a) by order. + assert (log2_up a <= b). + apply lt_succ_r. rewrite <- (lt_succ_pred 0 _ Hc'). + rewrite <- succ_lt_mono. + apply (pow_lt_mono_r_iff 2); try order'. + order. +Qed. + +(** [log2_up] is exact on powers of 2 *) + +Lemma log2_up_pow2 : forall a, 0<=a -> log2_up (2^a) == a. +Proof. + intros a Ha. + le_elim Ha. + apply log2_up_unique; trivial. + split; try order. + apply pow_lt_mono_r; try order'. + rewrite <- (lt_succ_pred 0 a Ha) at 2. + now apply lt_succ_r. + now rewrite <- Ha, pow_0_r, log2_up_eqn0. +Qed. + +(** [log2_up] and successors of powers of 2 *) + +Lemma log2_up_succ_pow2 : forall a, 0<=a -> log2_up (S (2^a)) == S a. +Proof. + intros a Ha. + rewrite log2_up_eqn, pred_succ, log2_pow2; try easy. + rewrite one_succ, <- succ_lt_mono. apply pow_pos_nonneg; order'. +Qed. + +(** Basic constants *) + +Lemma log2_up_1 : log2_up 1 == 0. +Proof. + now apply log2_up_eqn0. +Qed. + +Lemma log2_up_2 : log2_up 2 == 1. +Proof. + rewrite <- (pow_1_r 2). apply log2_up_pow2; order'. +Qed. + +(** Links between log2 and [log2_up] *) + +Lemma le_log2_log2_up : forall a, log2 a <= log2_up a. +Proof. + intros a. unfold log2_up. case compare_spec; intros H. + rewrite <- H, log2_1. order. + rewrite <- (lt_succ_pred 1 a H) at 1. apply log2_succ_le. + rewrite log2_nonpos. order. now rewrite <-lt_succ_r, <-one_succ. +Qed. + +Lemma le_log2_up_succ_log2 : forall a, log2_up a <= S (log2 a). +Proof. + intros a. unfold log2_up. case compare_spec; intros H; try order_pos. + rewrite <- succ_le_mono. apply log2_le_mono. + rewrite <- (lt_succ_pred 1 a H) at 2. apply le_succ_diag_r. +Qed. + +Lemma log2_log2_up_spec : forall a, 0<a -> + 2^log2 a <= a <= 2^log2_up a. +Proof. + intros a H. split. + now apply log2_spec. + rewrite <-le_succ_l, <-one_succ in H. le_elim H. + now apply log2_up_spec. + now rewrite <-H, log2_up_1, pow_0_r. +Qed. + +Lemma log2_log2_up_exact : + forall a, 0<a -> (log2 a == log2_up a <-> exists b, a == 2^b). +Proof. + intros a Ha. + split. intros. exists (log2 a). + generalize (log2_log2_up_spec a Ha). rewrite <-H. + destruct 1; order. + intros (b,Hb). rewrite Hb. + destruct (le_gt_cases 0 b). + now rewrite log2_pow2, log2_up_pow2. + rewrite pow_neg_r; trivial. now rewrite log2_nonpos, log2_up_nonpos. +Qed. + +(** [log2_up] n is strictly positive for 1<n *) + +Lemma log2_up_pos : forall a, 1<a -> 0 < log2_up a. +Proof. + intros. rewrite log2_up_eqn; trivial. apply lt_succ_r; order_pos. +Qed. + +(** Said otherwise, [log2_up] is null only below 1 *) + +Lemma log2_up_null : forall a, log2_up a == 0 <-> a <= 1. +Proof. + intros a. split; intros H. + destruct (le_gt_cases a 1) as [Ha|Ha]; trivial. + generalize (log2_up_pos a Ha); order. + now apply log2_up_eqn0. +Qed. + +(** [log2_up] is a monotone function (but not a strict one) *) + +Lemma log2_up_le_mono : forall a b, a<=b -> log2_up a <= log2_up b. +Proof. + intros a b H. + destruct (le_gt_cases a 1) as [Ha|Ha]. + rewrite log2_up_eqn0; trivial. apply log2_up_nonneg. + rewrite 2 log2_up_eqn; try order. + rewrite <- succ_le_mono. apply log2_le_mono, succ_le_mono. + rewrite 2 lt_succ_pred with 1; order. +Qed. + +(** No reverse result for <=, consider for instance log2_up 4 <= log2_up 3 *) + +Lemma log2_up_lt_cancel : forall a b, log2_up a < log2_up b -> a < b. +Proof. + intros a b H. + destruct (le_gt_cases b 1) as [Hb|Hb]. + rewrite (log2_up_eqn0 b) in H; trivial. + generalize (log2_up_nonneg a); order. + destruct (le_gt_cases a 1) as [Ha|Ha]. order. + rewrite 2 log2_up_eqn in H; try order. + rewrite <- succ_lt_mono in H. apply log2_lt_cancel, succ_lt_mono in H. + rewrite 2 lt_succ_pred with 1 in H; order. +Qed. + +(** When left side is a power of 2, we have an equivalence for < *) + +Lemma log2_up_lt_pow2 : forall a b, 0<a -> (2^b<a <-> b < log2_up a). +Proof. + intros a b Ha. + split; intros H. + destruct (lt_ge_cases b 0) as [Hb|Hb]. + generalize (log2_up_nonneg a); order. + apply (pow_lt_mono_r_iff 2). order'. apply log2_up_nonneg. + apply lt_le_trans with a; trivial. + apply (log2_up_spec a). + apply le_lt_trans with (2^b); trivial. + rewrite one_succ, le_succ_l. apply pow_pos_nonneg; order'. + destruct (lt_ge_cases b 0) as [Hb|Hb]. + now rewrite pow_neg_r. + rewrite <- (log2_up_pow2 b) in H; trivial. now apply log2_up_lt_cancel. +Qed. + +(** When right side is a square, we have an equivalence for <= *) + +Lemma log2_up_le_pow2 : forall a b, 0<a -> (a<=2^b <-> log2_up a <= b). +Proof. + intros a b Ha. + split; intros H. + destruct (lt_ge_cases b 0) as [Hb|Hb]. + rewrite pow_neg_r in H; order. + rewrite <- (log2_up_pow2 b); trivial. now apply log2_up_le_mono. + transitivity (2^(log2_up a)). + now apply log2_log2_up_spec. + apply pow_le_mono_r; order'. +Qed. + +(** Comparing [log2_up] and identity *) + +Lemma log2_up_lt_lin : forall a, 0<a -> log2_up a < a. +Proof. + intros a Ha. + assert (H : S (P a) == a) by (now apply lt_succ_pred with 0). + rewrite <- H at 2. apply lt_succ_r. apply log2_up_le_pow2; trivial. + rewrite <- H at 1. apply le_succ_l. + apply pow_gt_lin_r. order'. apply lt_succ_r; order. +Qed. + +Lemma log2_up_le_lin : forall a, 0<=a -> log2_up a <= a. +Proof. + intros a Ha. + le_elim Ha. + now apply lt_le_incl, log2_up_lt_lin. + rewrite <- Ha, log2_up_nonpos; order. +Qed. + +(** [log2_up] and multiplication. *) + +(** Due to rounding error, we don't have the usual + [log2_up (a*b) = log2_up a + log2_up b] but we may be off by 1 at most *) + +Lemma log2_up_mul_above : forall a b, 0<=a -> 0<=b -> + log2_up (a*b) <= log2_up a + log2_up b. +Proof. + intros a b Ha Hb. + assert (Ha':=log2_up_nonneg a). + assert (Hb':=log2_up_nonneg b). + le_elim Ha. + le_elim Hb. + apply log2_up_le_pow2; try order_pos. + rewrite pow_add_r; trivial. + apply mul_le_mono_nonneg; try apply log2_log2_up_spec; order'. + rewrite <- Hb. nzsimpl. rewrite log2_up_nonpos; order_pos. + rewrite <- Ha. nzsimpl. rewrite log2_up_nonpos; order_pos. +Qed. + +Lemma log2_up_mul_below : forall a b, 0<a -> 0<b -> + log2_up a + log2_up b <= S (log2_up (a*b)). +Proof. + intros a b Ha Hb. + rewrite <-le_succ_l, <-one_succ in Ha. le_elim Ha. + rewrite <-le_succ_l, <-one_succ in Hb. le_elim Hb. + assert (Ha' : 0 < log2_up a) by (apply log2_up_pos; trivial). + assert (Hb' : 0 < log2_up b) by (apply log2_up_pos; trivial). + rewrite <- (lt_succ_pred 0 (log2_up a)); trivial. + rewrite <- (lt_succ_pred 0 (log2_up b)); trivial. + nzsimpl. rewrite <- succ_le_mono, le_succ_l. + apply (pow_lt_mono_r_iff 2). order'. apply log2_up_nonneg. + rewrite pow_add_r; try (apply lt_succ_r; rewrite (lt_succ_pred 0); trivial). + apply lt_le_trans with (a*b). + apply mul_lt_mono_nonneg; try order_pos; try now apply log2_up_spec. + apply log2_up_spec. + setoid_replace 1 with (1*1) by now nzsimpl. + apply mul_lt_mono_nonneg; order'. + rewrite <- Hb, log2_up_1; nzsimpl. apply le_succ_diag_r. + rewrite <- Ha, log2_up_1; nzsimpl. apply le_succ_diag_r. +Qed. + +(** And we can't find better approximations in general. + - The upper bound is exact for powers of 2. + - Concerning the lower bound, for any c>1, take a=b=2^c+1, + then [log2_up (a*b) = c+c +1] while [(log2_up a) = (log2_up b) = c+1] +*) + +(** At least, we get back the usual equation when we multiply by 2 (or 2^k) *) + +Lemma log2_up_mul_pow2 : forall a b, 0<a -> 0<=b -> + log2_up (a*2^b) == b + log2_up a. +Proof. + intros a b Ha Hb. + rewrite <- le_succ_l, <- one_succ in Ha; le_elim Ha. + apply log2_up_unique. apply add_nonneg_pos; trivial. now apply log2_up_pos. + split. + assert (EQ := lt_succ_pred 0 _ (log2_up_pos _ Ha)). + rewrite <- EQ. nzsimpl. rewrite pow_add_r, mul_comm; trivial. + apply mul_lt_mono_pos_r. order_pos. now apply log2_up_spec. + rewrite <- lt_succ_r, EQ. now apply log2_up_pos. + rewrite pow_add_r, mul_comm; trivial. + apply mul_le_mono_nonneg_l. order_pos. now apply log2_up_spec. + apply log2_up_nonneg. + now rewrite <- Ha, mul_1_l, log2_up_1, add_0_r, log2_up_pow2. +Qed. + +Lemma log2_up_double : forall a, 0<a -> log2_up (2*a) == S (log2_up a). +Proof. + intros a Ha. generalize (log2_up_mul_pow2 a 1 Ha le_0_1). now nzsimpl'. +Qed. + +(** Two numbers with same [log2_up] cannot be far away. *) + +Lemma log2_up_same : forall a b, 0<a -> 0<b -> log2_up a == log2_up b -> a < 2*b. +Proof. + intros a b Ha Hb H. + apply log2_up_lt_cancel. rewrite log2_up_double, H by trivial. + apply lt_succ_diag_r. +Qed. + +(** [log2_up] and successor : + - the [log2_up] function climbs by at most 1 at a time + - otherwise it stays at the same value + - the +1 steps occur after powers of two +*) + +Lemma log2_up_succ_le : forall a, log2_up (S a) <= S (log2_up a). +Proof. + intros a. + destruct (lt_trichotomy 1 a) as [LT|[EQ|LT]]. + rewrite 2 log2_up_eqn; trivial. + rewrite pred_succ, <- succ_le_mono. rewrite <-(lt_succ_pred 1 a LT) at 1. + apply log2_succ_le. + apply lt_succ_r; order. + rewrite <- EQ, <- two_succ, log2_up_1, log2_up_2. now nzsimpl'. + rewrite 2 log2_up_eqn0. order_pos. order'. now rewrite le_succ_l. +Qed. + +Lemma log2_up_succ_or : forall a, + log2_up (S a) == S (log2_up a) \/ log2_up (S a) == log2_up a. +Proof. + intros. + destruct (le_gt_cases (log2_up (S a)) (log2_up a)). + right. generalize (log2_up_le_mono _ _ (le_succ_diag_r a)); order. + left. apply le_succ_l in H. generalize (log2_up_succ_le a); order. +Qed. + +Lemma log2_up_eq_succ_is_pow2 : forall a, + log2_up (S a) == S (log2_up a) -> exists b, a == 2^b. +Proof. + intros a H. + destruct (le_gt_cases a 0) as [Ha|Ha]. + rewrite 2 (proj2 (log2_up_null _)) in H. generalize (lt_succ_diag_r 0); order. + order'. apply le_succ_l. order'. + assert (Ha' : 1 < S a) by (now rewrite one_succ, <- succ_lt_mono). + exists (log2_up a). + generalize (proj1 (log2_up_spec (S a) Ha')) (proj2 (log2_log2_up_spec a Ha)). + rewrite H, pred_succ, lt_succ_r. order. +Qed. + +Lemma log2_up_eq_succ_iff_pow2 : forall a, 0<a -> + (log2_up (S a) == S (log2_up a) <-> exists b, a == 2^b). +Proof. + intros a Ha. + split. apply log2_up_eq_succ_is_pow2. + intros (b,Hb). + destruct (lt_ge_cases b 0) as [Hb'|Hb']. + rewrite pow_neg_r in Hb; order. + rewrite Hb, log2_up_pow2; try order'. + now rewrite log2_up_succ_pow2. +Qed. + +Lemma log2_up_succ_double : forall a, 0<a -> + log2_up (2*a+1) == 2 + log2 a. +Proof. + intros a Ha. + rewrite log2_up_eqn. rewrite add_1_r, pred_succ, log2_double; now nzsimpl'. + apply le_lt_trans with (0+1). now nzsimpl'. + apply add_lt_mono_r. order_pos. +Qed. + +(** [log2_up] and addition *) + +Lemma log2_up_add_le : forall a b, a~=1 -> b~=1 -> + log2_up (a+b) <= log2_up a + log2_up b. +Proof. + intros a b Ha Hb. + destruct (lt_trichotomy a 1) as [Ha'|[Ha'|Ha']]; [|order|]. + rewrite (log2_up_eqn0 a) by order. nzsimpl. apply log2_up_le_mono. + rewrite one_succ, lt_succ_r in Ha'. + rewrite <- (add_0_l b) at 2. now apply add_le_mono. + destruct (lt_trichotomy b 1) as [Hb'|[Hb'|Hb']]; [|order|]. + rewrite (log2_up_eqn0 b) by order. nzsimpl. apply log2_up_le_mono. + rewrite one_succ, lt_succ_r in Hb'. + rewrite <- (add_0_r a) at 2. now apply add_le_mono. + clear Ha Hb. + transitivity (log2_up (a*b)). + now apply log2_up_le_mono, add_le_mul. + apply log2_up_mul_above; order'. +Qed. + +(** The sum of two [log2_up] is less than twice the [log2_up] of the sum. + The large inequality is obvious thanks to monotonicity. + The strict one requires some more work. This is almost + a convexity inequality for points [2a], [2b] and their middle [a+b] : + ideally, we would have [2*log(a+b) >= log(2a)+log(2b) = 2+log a+log b]. + Here, we cannot do better: consider for instance a=3 b=5, then 2+3<2*3 +*) + +Lemma add_log2_up_lt : forall a b, 0<a -> 0<b -> + log2_up a + log2_up b < 2 * log2_up (a+b). +Proof. + intros a b Ha Hb. nzsimpl'. + assert (H : log2_up a <= log2_up (a+b)). + apply log2_up_le_mono. rewrite <- (add_0_r a) at 1. apply add_le_mono; order. + assert (H' : log2_up b <= log2_up (a+b)). + apply log2_up_le_mono. rewrite <- (add_0_l b) at 1. apply add_le_mono; order. + le_elim H. + apply lt_le_trans with (log2_up (a+b) + log2_up b). + now apply add_lt_mono_r. now apply add_le_mono_l. + rewrite <- H at 1. apply add_lt_mono_l. + le_elim H'. trivial. + symmetry in H. apply log2_up_same in H; try order_pos. + symmetry in H'. apply log2_up_same in H'; try order_pos. + revert H H'. nzsimpl'. rewrite <- add_lt_mono_l, <- add_lt_mono_r; order. +Qed. + +End NZLog2UpProp. + |