diff options
author | Stephane Glondu <steph@glondu.net> | 2013-05-08 18:03:54 +0200 |
---|---|---|
committer | Stephane Glondu <steph@glondu.net> | 2013-05-08 18:03:54 +0200 |
commit | db38bb4ad9aff74576d3b7f00028d48f0447d5bd (patch) | |
tree | 09dafc3e5c7361d3a28e93677eadd2b7237d4f9f /theories/Numbers/Cyclic/Int31/Ring31.v | |
parent | 6e34b272d789455a9be589e27ad3a998cf25496b (diff) | |
parent | 499a11a45b5711d4eaabe84a80f0ad3ae539d500 (diff) |
Merge branch 'experimental/upstream' into upstream
Diffstat (limited to 'theories/Numbers/Cyclic/Int31/Ring31.v')
-rw-r--r-- | theories/Numbers/Cyclic/Int31/Ring31.v | 11 |
1 files changed, 5 insertions, 6 deletions
diff --git a/theories/Numbers/Cyclic/Int31/Ring31.v b/theories/Numbers/Cyclic/Int31/Ring31.v index 37dc0871..f5a08438 100644 --- a/theories/Numbers/Cyclic/Int31/Ring31.v +++ b/theories/Numbers/Cyclic/Int31/Ring31.v @@ -1,13 +1,11 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Ring31.v 14641 2011-11-06 11:59:10Z herbelin $ i*) - (** * Int31 numbers defines Z/(2^31)Z, and can hence be equipped with a ring structure and a ring tactic *) @@ -83,9 +81,10 @@ Qed. Lemma eqb31_eq : forall x y, eqb31 x y = true <-> x=y. Proof. unfold eqb31. intros x y. -generalize (Cyclic31.spec_compare x y). -destruct (x ?= y); intuition; subst; auto with zarith; try discriminate. -apply Int31_canonic; auto. +rewrite Cyclic31.spec_compare. case Z.compare_spec. +intuition. apply Int31_canonic; auto. +intuition; subst; auto with zarith; try discriminate. +intuition; subst; auto with zarith; try discriminate. Qed. Lemma eqb31_correct : forall x y, eqb31 x y = true -> x=y. |