diff options
author | Stephane Glondu <steph@glondu.net> | 2010-07-21 09:46:51 +0200 |
---|---|---|
committer | Stephane Glondu <steph@glondu.net> | 2010-07-21 09:46:51 +0200 |
commit | 5b7eafd0f00a16d78f99a27f5c7d5a0de77dc7e6 (patch) | |
tree | 631ad791a7685edafeb1fb2e8faeedc8379318ae /theories/Numbers/Cyclic/Int31/Int31.v | |
parent | da178a880e3ace820b41d38b191d3785b82991f5 (diff) |
Imported Upstream snapshot 8.3~beta0+13298
Diffstat (limited to 'theories/Numbers/Cyclic/Int31/Int31.v')
-rw-r--r-- | theories/Numbers/Cyclic/Int31/Int31.v | 141 |
1 files changed, 75 insertions, 66 deletions
diff --git a/theories/Numbers/Cyclic/Int31/Int31.v b/theories/Numbers/Cyclic/Int31/Int31.v index 154b436b..cc224254 100644 --- a/theories/Numbers/Cyclic/Int31/Int31.v +++ b/theories/Numbers/Cyclic/Int31/Int31.v @@ -8,7 +8,7 @@ (* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *) (************************************************************************) -(*i $Id: Int31.v 11072 2008-06-08 16:13:37Z herbelin $ i*) +(*i $Id$ i*) Require Import NaryFunctions. Require Import Wf_nat. @@ -17,7 +17,7 @@ Require Export DoubleType. Unset Boxed Definitions. -(** * 31-bit integers *) +(** * 31-bit integers *) (** This file contains basic definitions of a 31-bit integer arithmetic. In fact it is more general than that. The only reason @@ -36,11 +36,13 @@ Definition size := 31%nat. Inductive digits : Type := D0 | D1. (** The type of 31-bit integers *) - -(** The type [int31] has a unique constructor [I31] that expects + +(** The type [int31] has a unique constructor [I31] that expects 31 arguments of type [digits]. *) -Inductive int31 : Type := I31 : nfun digits size int31. +Definition digits31 t := Eval compute in nfun digits size t. + +Inductive int31 : Type := I31 : digits31 int31. (* spiwack: Registration of the type of integers, so that the matchs in the functions below perform dynamic decompilation (otherwise some segfault @@ -50,7 +52,7 @@ Register int31 as int31 type in "coq_int31" by True. Delimit Scope int31_scope with int31. Bind Scope int31_scope with int31. -Open Scope int31_scope. +Local Open Scope int31_scope. (** * Constants *) @@ -69,26 +71,26 @@ Definition Twon : int31 := Eval compute in (napply_cst _ _ D0 (size-2) I31) D1 D (** * Bits manipulation *) -(** [sneakr b x] shifts [x] to the right by one bit. +(** [sneakr b x] shifts [x] to the right by one bit. Rightmost digit is lost while leftmost digit becomes [b]. - Pseudo-code is + Pseudo-code is [ match x with (I31 d0 ... dN) => I31 b d0 ... d(N-1) end ] *) Definition sneakr : digits -> int31 -> int31 := Eval compute in fun b => int31_rect _ (napply_except_last _ _ (size-1) (I31 b)). -(** [sneakl b x] shifts [x] to the left by one bit. +(** [sneakl b x] shifts [x] to the left by one bit. Leftmost digit is lost while rightmost digit becomes [b]. - Pseudo-code is + Pseudo-code is [ match x with (I31 d0 ... dN) => I31 d1 ... dN b end ] *) -Definition sneakl : digits -> int31 -> int31 := Eval compute in +Definition sneakl : digits -> int31 -> int31 := Eval compute in fun b => int31_rect _ (fun _ => napply_then_last _ _ b (size-1) I31). -(** [shiftl], [shiftr], [twice] and [twice_plus_one] are direct +(** [shiftl], [shiftr], [twice] and [twice_plus_one] are direct consequences of [sneakl] and [sneakr]. *) Definition shiftl := sneakl D0. @@ -96,31 +98,31 @@ Definition shiftr := sneakr D0. Definition twice := sneakl D0. Definition twice_plus_one := sneakl D1. -(** [firstl x] returns the leftmost digit of number [x]. +(** [firstl x] returns the leftmost digit of number [x]. Pseudo-code is [ match x with (I31 d0 ... dN) => d0 end ] *) -Definition firstl : int31 -> digits := Eval compute in +Definition firstl : int31 -> digits := Eval compute in int31_rect _ (fun d => napply_discard _ _ d (size-1)). -(** [firstr x] returns the rightmost digit of number [x]. +(** [firstr x] returns the rightmost digit of number [x]. Pseudo-code is [ match x with (I31 d0 ... dN) => dN end ] *) -Definition firstr : int31 -> digits := Eval compute in +Definition firstr : int31 -> digits := Eval compute in int31_rect _ (napply_discard _ _ (fun d=>d) (size-1)). -(** [iszero x] is true iff [x = I31 D0 ... D0]. Pseudo-code is +(** [iszero x] is true iff [x = I31 D0 ... D0]. Pseudo-code is [ match x with (I31 D0 ... D0) => true | _ => false end ] *) -Definition iszero : int31 -> bool := Eval compute in - let f d b := match d with D0 => b | D1 => false end +Definition iszero : int31 -> bool := Eval compute in + let f d b := match d with D0 => b | D1 => false end in int31_rect _ (nfold_bis _ _ f true size). -(* NB: DO NOT transform the above match in a nicer (if then else). +(* NB: DO NOT transform the above match in a nicer (if then else). It seems to work, but later "unfold iszero" takes forever. *) -(** [base] is [2^31], obtained via iterations of [Zdouble]. - It can also be seen as the smallest b > 0 s.t. phi_inv b = 0 +(** [base] is [2^31], obtained via iterations of [Zdouble]. + It can also be seen as the smallest b > 0 s.t. phi_inv b = 0 (see below) *) Definition base := Eval compute in @@ -140,7 +142,7 @@ Fixpoint recl_aux (n:nat)(A:Type)(case0:A)(caserec:digits->int31->A->A) caserec (firstl i) si (recl_aux next A case0 caserec si) end. -Fixpoint recr_aux (n:nat)(A:Type)(case0:A)(caserec:digits->int31->A->A) +Fixpoint recr_aux (n:nat)(A:Type)(case0:A)(caserec:digits->int31->A->A) (i:int31) : A := match n with | O => case0 @@ -159,22 +161,22 @@ Definition recr := recr_aux size. (** From int31 to Z, we simply iterates [Zdouble] or [Zdouble_plus_one]. *) -Definition phi : int31 -> Z := +Definition phi : int31 -> Z := recr Z (0%Z) (fun b _ => match b with D0 => Zdouble | D1 => Zdouble_plus_one end). -(** From positive to int31. An abstract definition could be : - [ phi_inv (2n) = 2*(phi_inv n) /\ +(** From positive to int31. An abstract definition could be : + [ phi_inv (2n) = 2*(phi_inv n) /\ phi_inv 2n+1 = 2*(phi_inv n) + 1 ] *) -Fixpoint phi_inv_positive p := +Fixpoint phi_inv_positive p := match p with | xI q => twice_plus_one (phi_inv_positive q) | xO q => twice (phi_inv_positive q) | xH => In end. -(** The negative part : 2-complement *) +(** The negative part : 2-complement *) Fixpoint complement_negative p := match p with @@ -186,9 +188,9 @@ Fixpoint complement_negative p := (** A simple incrementation function *) Definition incr : int31 -> int31 := - recr int31 In - (fun b si rec => match b with - | D0 => sneakl D1 si + recr int31 In + (fun b si rec => match b with + | D0 => sneakl D1 si | D1 => sneakl D0 rec end). (** We can now define the conversion from Z to int31. *) @@ -196,11 +198,11 @@ Definition incr : int31 -> int31 := Definition phi_inv : Z -> int31 := fun n => match n with | Z0 => On - | Zpos p => phi_inv_positive p + | Zpos p => phi_inv_positive p | Zneg p => incr (complement_negative p) end. -(** [phi_inv2] is similar to [phi_inv] but returns a double word +(** [phi_inv2] is similar to [phi_inv] but returns a double word [zn2z int31] *) Definition phi_inv2 n := @@ -211,7 +213,7 @@ Definition phi_inv2 n := (** [phi2] is similar to [phi] but takes a double word (two args) *) -Definition phi2 nh nl := +Definition phi2 nh nl := ((phi nh)*base+(phi nl))%Z. (** * Addition *) @@ -227,11 +229,11 @@ Notation "n + m" := (add31 n m) : int31_scope. (* mode, (phi n)+(phi m) is computed twice*) (* it may be considered to optimize it *) -Definition add31c (n m : int31) := +Definition add31c (n m : int31) := let npm := n+m in - match (phi npm ?= (phi n)+(phi m))%Z with - | Eq => C0 npm - | _ => C1 npm + match (phi npm ?= (phi n)+(phi m))%Z with + | Eq => C0 npm + | _ => C1 npm end. Notation "n '+c' m" := (add31c n m) (at level 50, no associativity) : int31_scope. @@ -254,7 +256,7 @@ Notation "n - m" := (sub31 n m) : int31_scope. (** Subtraction with carry (thus exact) *) -Definition sub31c (n m : int31) := +Definition sub31c (n m : int31) := let nmm := n-m in match (phi nmm ?= (phi n)-(phi m))%Z with | Eq => C0 nmm @@ -272,6 +274,10 @@ Definition sub31carryc (n m : int31) := | _ => C1 nmmmone end. +(** Opposite *) + +Definition opp31 x := On - x. +Notation "- x" := (opp31 x) : int31_scope. (** Multiplication *) @@ -290,13 +296,13 @@ Notation "n '*c' m" := (mul31c n m) (at level 40, no associativity) : int31_scop (** Division of a double size word modulo [2^31] *) -Definition div3121 (nh nl m : int31) := +Definition div3121 (nh nl m : int31) := let (q,r) := Zdiv_eucl (phi2 nh nl) (phi m) in (phi_inv q, phi_inv r). (** Division modulo [2^31] *) -Definition div31 (n m : int31) := +Definition div31 (n m : int31) := let (q,r) := Zdiv_eucl (phi n) (phi m) in (phi_inv q, phi_inv r). Notation "n / m" := (div31 n m) : int31_scope. @@ -307,13 +313,16 @@ Notation "n / m" := (div31 n m) : int31_scope. Definition compare31 (n m : int31) := ((phi n)?=(phi m))%Z. Notation "n ?= m" := (compare31 n m) (at level 70, no associativity) : int31_scope. +Definition eqb31 (n m : int31) := + match n ?= m with Eq => true | _ => false end. + -(** Computing the [i]-th iterate of a function: +(** Computing the [i]-th iterate of a function: [iter_int31 i A f = f^i] *) Definition iter_int31 i A f := - recr (A->A) (fun x => x) - (fun b si rec => match b with + recr (A->A) (fun x => x) + (fun b si rec => match b with | D0 => fun x => rec (rec x) | D1 => fun x => f (rec (rec x)) end) @@ -322,9 +331,9 @@ Definition iter_int31 i A f := (** Combining the [(31-p)] low bits of [i] above the [p] high bits of [j]: [addmuldiv31 p i j = i*2^p+j/2^(31-p)] (modulo [2^31]) *) -Definition addmuldiv31 p i j := - let (res, _ ) := - iter_int31 p (int31*int31) +Definition addmuldiv31 p i j := + let (res, _ ) := + iter_int31 p (int31*int31) (fun ij => let (i,j) := ij in (sneakl (firstl j) i, shiftl j)) (i,j) in @@ -346,7 +355,7 @@ Register addmuldiv31 as int31 addmuldiv in "coq_int31" by True. Definition gcd31 (i j:int31) := (fix euler (guard:nat) (i j:int31) {struct guard} := - match guard with + match guard with | O => In | S p => match j ?= On with | Eq => i @@ -370,17 +379,17 @@ Eval lazy delta [Twon] in | _ => j end. -Fixpoint iter31_sqrt (n: nat) (rec: int31 -> int31 -> int31) +Fixpoint iter31_sqrt (n: nat) (rec: int31 -> int31 -> int31) (i j: int31) {struct n} : int31 := - sqrt31_step + sqrt31_step (match n with O => rec | S n => (iter31_sqrt n (iter31_sqrt n rec)) end) i j. -Definition sqrt31 i := +Definition sqrt31 i := Eval lazy delta [On In Twon] in - match compare31 In i with + match compare31 In i with Gt => On | Eq => In | Lt => iter31_sqrt 31 (fun i j => j) i (fst (i/Twon)) @@ -388,7 +397,7 @@ Eval lazy delta [On In Twon] in Definition v30 := Eval compute in (addmuldiv31 (phi_inv (Z_of_nat size - 1)) In On). -Definition sqrt312_step (rec: int31 -> int31 -> int31 -> int31) +Definition sqrt312_step (rec: int31 -> int31 -> int31 -> int31) (ih il j: int31) := Eval lazy delta [Twon v30] in match ih ?= j with Eq => j | Gt => j | _ => @@ -401,28 +410,28 @@ Eval lazy delta [Twon v30] in | _ => j end end. -Fixpoint iter312_sqrt (n: nat) - (rec: int31 -> int31 -> int31 -> int31) +Fixpoint iter312_sqrt (n: nat) + (rec: int31 -> int31 -> int31 -> int31) (ih il j: int31) {struct n} : int31 := - sqrt312_step + sqrt312_step (match n with O => rec | S n => (iter312_sqrt n (iter312_sqrt n rec)) end) ih il j. -Definition sqrt312 ih il := +Definition sqrt312 ih il := Eval lazy delta [On In] in let s := iter312_sqrt 31 (fun ih il j => j) ih il Tn in match s *c s with W0 => (On, C0 On) (* impossible *) | WW ih1 il1 => match il -c il1 with - C0 il2 => + C0 il2 => match ih ?= ih1 with Gt => (s, C1 il2) | _ => (s, C0 il2) end - | C1 il2 => + | C1 il2 => match (ih - In) ?= ih1 with (* we could parametrize ih - 1 *) Gt => (s, C1 il2) | _ => (s, C0 il2) @@ -431,7 +440,7 @@ Eval lazy delta [On In] in end. -Fixpoint p2i n p : (N*int31)%type := +Fixpoint p2i n p : (N*int31)%type := match n with | O => (Npos p, On) | S n => match p with @@ -444,26 +453,26 @@ Fixpoint p2i n p : (N*int31)%type := Definition positive_to_int31 (p:positive) := p2i size p. (** Constant 31 converted into type int31. - It is used as default answer for numbers of zeros + It is used as default answer for numbers of zeros in [head0] and [tail0] *) Definition T31 : int31 := Eval compute in phi_inv (Z_of_nat size). Definition head031 (i:int31) := - recl _ (fun _ => T31) - (fun b si rec n => match b with + recl _ (fun _ => T31) + (fun b si rec n => match b with | D0 => rec (add31 n In) | D1 => n end) i On. Definition tail031 (i:int31) := - recr _ (fun _ => T31) - (fun b si rec n => match b with + recr _ (fun _ => T31) + (fun b si rec n => match b with | D0 => rec (add31 n In) | D1 => n end) i On. Register head031 as int31 head0 in "coq_int31" by True. -Register tail031 as int31 tail0 in "coq_int31" by True. +Register tail031 as int31 tail0 in "coq_int31" by True. |