summaryrefslogtreecommitdiff
path: root/theories/NArith
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <smimram@debian.org>2008-07-25 15:12:53 +0200
committerGravatar Samuel Mimram <smimram@debian.org>2008-07-25 15:12:53 +0200
commita0cfa4f118023d35b767a999d5a2ac4b082857b4 (patch)
treedabcac548e299fee1da464c93b3dba98484f45b1 /theories/NArith
parent2281410e38ef99d025ea77194585a9bc019fdaa9 (diff)
Imported Upstream version 8.2~beta3+dfsgupstream/8.2.beta3+dfsg
Diffstat (limited to 'theories/NArith')
-rw-r--r--theories/NArith/BinNat.v180
-rw-r--r--theories/NArith/BinPos.v1171
-rw-r--r--theories/NArith/NArith.v4
-rw-r--r--theories/NArith/Ndec.v182
-rw-r--r--theories/NArith/Ndigits.v9
-rw-r--r--theories/NArith/Ndist.v2
-rw-r--r--theories/NArith/Nnat.v205
-rw-r--r--theories/NArith/Pnat.v4
8 files changed, 1131 insertions, 626 deletions
diff --git a/theories/NArith/BinNat.v b/theories/NArith/BinNat.v
index 78353145..20dabed2 100644
--- a/theories/NArith/BinNat.v
+++ b/theories/NArith/BinNat.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: BinNat.v 8771 2006-04-29 11:55:57Z letouzey $ i*)
+(*i $Id: BinNat.v 10806 2008-04-16 23:51:06Z letouzey $ i*)
Require Import BinPos.
Unset Boxed Definitions.
@@ -59,6 +59,16 @@ Definition Nsucc n :=
| Npos p => Npos (Psucc p)
end.
+(** Predecessor *)
+
+Definition Npred (n : N) := match n with
+| N0 => N0
+| Npos p => match p with
+ | xH => N0
+ | _ => Npos (Ppred p)
+ end
+end.
+
(** Addition *)
Definition Nplus n m :=
@@ -70,6 +80,21 @@ Definition Nplus n m :=
Infix "+" := Nplus : N_scope.
+(** Subtraction *)
+
+Definition Nminus (n m : N) :=
+match n, m with
+| N0, _ => N0
+| n, N0 => n
+| Npos n', Npos m' =>
+ match Pminus_mask n' m' with
+ | IsPos p => Npos p
+ | _ => N0
+ end
+end.
+
+Infix "-" := Nminus : N_scope.
+
(** Multiplication *)
Definition Nmult n m :=
@@ -93,6 +118,28 @@ Definition Ncompare n m :=
Infix "?=" := Ncompare (at level 70, no associativity) : N_scope.
+Definition Nlt (x y:N) := (x ?= y) = Lt.
+Definition Ngt (x y:N) := (x ?= y) = Gt.
+Definition Nle (x y:N) := (x ?= y) <> Gt.
+Definition Nge (x y:N) := (x ?= y) <> Lt.
+
+Infix "<=" := Nle : N_scope.
+Infix "<" := Nlt : N_scope.
+Infix ">=" := Nge : N_scope.
+Infix ">" := Ngt : N_scope.
+
+(** Min and max *)
+
+Definition Nmin (n n' : N) := match Ncompare n n' with
+ | Lt | Eq => n
+ | Gt => n'
+ end.
+
+Definition Nmax (n n' : N) := match Ncompare n n' with
+ | Lt | Eq => n'
+ | Gt => n
+ end.
+
(** convenient induction principles *)
Lemma N_ind_double :
@@ -123,15 +170,48 @@ Qed.
(** Peano induction on binary natural numbers *)
-Theorem Nind :
- forall P:N -> Prop,
- P N0 -> (forall n:N, P n -> P (Nsucc n)) -> forall n:N, P n.
+Definition Nrect
+ (P : N -> Type) (a : P N0)
+ (f : forall n : N, P n -> P (Nsucc n)) (n : N) : P n :=
+let f' (p : positive) (x : P (Npos p)) := f (Npos p) x in
+let P' (p : positive) := P (Npos p) in
+match n return (P n) with
+| N0 => a
+| Npos p => Prect P' (f N0 a) f' p
+end.
+
+Theorem Nrect_base : forall P a f, Nrect P a f N0 = a.
+Proof.
+intros P a f; simpl; reflexivity.
+Qed.
+
+Theorem Nrect_step : forall P a f n, Nrect P a f (Nsucc n) = f n (Nrect P a f n).
+Proof.
+intros P a f; destruct n as [| p]; simpl;
+[rewrite Prect_base | rewrite Prect_succ]; reflexivity.
+Qed.
+
+Definition Nind (P : N -> Prop) := Nrect P.
+
+Definition Nrec (P : N -> Set) := Nrect P.
+
+Theorem Nrec_base : forall P a f, Nrec P a f N0 = a.
Proof.
-destruct n.
- assumption.
- apply Pind with (P := fun p => P (Npos p)).
-exact (H0 N0 H).
-intro p'; exact (H0 (Npos p')).
+intros P a f; unfold Nrec; apply Nrect_base.
+Qed.
+
+Theorem Nrec_step : forall P a f n, Nrec P a f (Nsucc n) = f n (Nrec P a f n).
+Proof.
+intros P a f; unfold Nrec; apply Nrect_step.
+Qed.
+
+(** Properties of successor and predecessor *)
+
+Theorem Npred_succ : forall n : N, Npred (Nsucc n) = n.
+Proof.
+destruct n as [| p]; simpl. reflexivity.
+case_eq (Psucc p); try (intros q H; rewrite <- H; now rewrite Ppred_succ).
+intro H; false_hyp H Psucc_not_one.
Qed.
(** Properties of addition *)
@@ -171,6 +251,11 @@ destruct n; destruct m.
simpl in |- *; rewrite Pplus_succ_permute_l; reflexivity.
Qed.
+Theorem Nsucc_0 : forall n : N, Nsucc n <> N0.
+Proof.
+intro n; elim n; simpl Nsucc; intros; discriminate.
+Qed.
+
Theorem Nsucc_inj : forall n m:N, Nsucc n = Nsucc m -> n = m.
Proof.
destruct n; destruct m; simpl in |- *; intro H; reflexivity || injection H;
@@ -188,13 +273,51 @@ intro n; pattern n in |- *; apply Nind; clear n; simpl in |- *.
apply IHn; apply Nsucc_inj; assumption.
Qed.
+(** Properties of subtraction. *)
+
+Lemma Nminus_N0_Nle : forall n n' : N, n - n' = N0 <-> n <= n'.
+Proof.
+destruct n as [| p]; destruct n' as [| q]; unfold Nle; simpl;
+split; intro H; try discriminate; try reflexivity.
+now elim H.
+intro H1; apply Pminus_mask_Gt in H1. destruct H1 as [h [H1 _]].
+rewrite H1 in H; discriminate.
+case_eq (Pcompare p q Eq); intro H1; rewrite H1 in H; try now elim H.
+assert (H2 : p = q); [now apply Pcompare_Eq_eq |]. now rewrite H2, Pminus_mask_diag.
+now rewrite Pminus_mask_Lt.
+Qed.
+
+Theorem Nminus_0_r : forall n : N, n - N0 = n.
+Proof.
+now destruct n.
+Qed.
+
+Theorem Nminus_succ_r : forall n m : N, n - (Nsucc m) = Npred (n - m).
+Proof.
+destruct n as [| p]; destruct m as [| q]; try reflexivity.
+now destruct p.
+simpl. rewrite Pminus_mask_succ_r, Pminus_mask_carry_spec.
+now destruct (Pminus_mask p q) as [| r |]; [| destruct r |].
+Qed.
+
(** Properties of multiplication *)
+Theorem Nmult_0_l : forall n:N, N0 * n = N0.
+Proof.
+reflexivity.
+Qed.
+
Theorem Nmult_1_l : forall n:N, Npos 1 * n = n.
Proof.
destruct n; reflexivity.
Qed.
+Theorem Nmult_Sn_m : forall n m : N, (Nsucc n) * m = m + n * m.
+Proof.
+destruct n as [| n]; destruct m as [| m]; simpl; auto.
+rewrite Pmult_Sn_m; reflexivity.
+Qed.
+
Theorem Nmult_1_r : forall n:N, n * Npos 1%positive = n.
Proof.
destruct n; simpl in |- *; try reflexivity.
@@ -233,13 +356,14 @@ destruct n; destruct m; reflexivity || (try discriminate H).
injection H; clear H; intro H; rewrite Pmult_reg_r with (1 := H); reflexivity.
Qed.
-Theorem Nmult_0_l : forall n:N, N0 * n = N0.
+(** Properties of comparison *)
+
+Lemma Ncompare_refl : forall n, (n ?= n) = Eq.
Proof.
-reflexivity.
+destruct n; simpl; auto.
+apply Pcompare_refl.
Qed.
-(** Properties of comparison *)
-
Theorem Ncompare_Eq_eq : forall n m:N, (n ?= m) = Eq -> n = m.
Proof.
destruct n as [| n]; destruct m as [| m]; simpl in |- *; intro H;
@@ -247,10 +371,10 @@ destruct n as [| n]; destruct m as [| m]; simpl in |- *; intro H;
rewrite (Pcompare_Eq_eq n m H); reflexivity.
Qed.
-Lemma Ncompare_refl : forall n, (n ?= n) = Eq.
+Theorem Ncompare_eq_correct : forall n m:N, (n ?= m) = Eq <-> n = m.
Proof.
-destruct n; simpl; auto.
-apply Pcompare_refl.
+split; intros;
+ [ apply Ncompare_Eq_eq; auto | subst; apply Ncompare_refl ].
Qed.
Lemma Ncompare_antisym : forall n m, CompOpp (n ?= m) = (m ?= n).
@@ -259,6 +383,30 @@ destruct n; destruct m; simpl; auto.
exact (Pcompare_antisym p p0 Eq).
Qed.
+Theorem Nlt_irrefl : forall n : N, ~ n < n.
+Proof.
+intro n; unfold Nlt; now rewrite Ncompare_refl.
+Qed.
+
+Theorem Ncompare_n_Sm :
+ forall n m : N, Ncompare n (Nsucc m) = Lt <-> Ncompare n m = Lt \/ n = m.
+Proof.
+intros n m; split; destruct n as [| p]; destruct m as [| q]; simpl; auto.
+destruct p; simpl; intros; discriminate.
+pose proof (proj1 (Pcompare_p_Sq p q));
+assert (p = q <-> Npos p = Npos q); [split; congruence | tauto].
+intros H; destruct H; discriminate.
+pose proof (proj2 (Pcompare_p_Sq p q));
+assert (p = q <-> Npos p = Npos q); [split; congruence | tauto].
+Qed.
+
+(** 0 is the least natural number *)
+
+Theorem Ncompare_0 : forall n : N, Ncompare n N0 <> Lt.
+Proof.
+destruct n; discriminate.
+Qed.
+
(** Dividing by 2 *)
Definition Ndiv2 (n:N) :=
diff --git a/theories/NArith/BinPos.v b/theories/NArith/BinPos.v
index 513a67c2..e3293e70 100644
--- a/theories/NArith/BinPos.v
+++ b/theories/NArith/BinPos.v
@@ -6,19 +6,19 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: BinPos.v 6699 2005-02-07 14:30:08Z coq $ i*)
+(*i $Id: BinPos.v 11033 2008-06-01 22:56:50Z letouzey $ i*)
Unset Boxed Definitions.
(**********************************************************************)
(** Binary positive numbers *)
-(** Original development by Pierre Crégut, CNET, Lannion, France *)
+(** Original development by Pierre Crégut, CNET, Lannion, France *)
Inductive positive : Set :=
- | xI : positive -> positive
- | xO : positive -> positive
- | xH : positive.
+| xI : positive -> positive
+| xO : positive -> positive
+| xH : positive.
(** Declare binding key for scope positive_scope *)
@@ -30,164 +30,181 @@ Bind Scope positive_scope with positive.
Arguments Scope xO [positive_scope].
Arguments Scope xI [positive_scope].
+(** Postfix notation for positive numbers, allowing to mimic
+ the position of bits in a big-endian representation.
+ For instance, we can write 1~1~0 instead of (xO (xI xH))
+ for the number 6 (which is 110 in binary notation).
+*)
+
+Notation "p ~ 1" := (xI p)
+ (at level 7, left associativity, format "p '~' '1'") : positive_scope.
+Notation "p ~ 0" := (xO p)
+ (at level 7, left associativity, format "p '~' '0'") : positive_scope.
+
+Open Local Scope positive_scope.
+
+(* In the current file, [xH] cannot yet be written as [1], since the
+ interpretation of positive numerical constants is not available
+ yet. We fix this here with an ad-hoc temporary notation. *)
+
+Notation Local "1" := xH (at level 7).
+
(** Successor *)
Fixpoint Psucc (x:positive) : positive :=
match x with
- | xI x' => xO (Psucc x')
- | xO x' => xI x'
- | xH => xO xH
+ | p~1 => (Psucc p)~0
+ | p~0 => p~1
+ | 1 => 1~0
end.
(** Addition *)
Set Boxed Definitions.
-Fixpoint Pplus (x y:positive) {struct x} : positive :=
+Fixpoint Pplus (x y:positive) : positive :=
match x, y with
- | xI x', xI y' => xO (Pplus_carry x' y')
- | xI x', xO y' => xI (Pplus x' y')
- | xI x', xH => xO (Psucc x')
- | xO x', xI y' => xI (Pplus x' y')
- | xO x', xO y' => xO (Pplus x' y')
- | xO x', xH => xI x'
- | xH, xI y' => xO (Psucc y')
- | xH, xO y' => xI y'
- | xH, xH => xO xH
+ | p~1, q~1 => (Pplus_carry p q)~0
+ | p~1, q~0 => (Pplus p q)~1
+ | p~1, 1 => (Psucc p)~0
+ | p~0, q~1 => (Pplus p q)~1
+ | p~0, q~0 => (Pplus p q)~0
+ | p~0, 1 => p~1
+ | 1, q~1 => (Psucc q)~0
+ | 1, q~0 => q~1
+ | 1, 1 => 1~0
end
-
- with Pplus_carry (x y:positive) {struct x} : positive :=
+
+with Pplus_carry (x y:positive) : positive :=
match x, y with
- | xI x', xI y' => xI (Pplus_carry x' y')
- | xI x', xO y' => xO (Pplus_carry x' y')
- | xI x', xH => xI (Psucc x')
- | xO x', xI y' => xO (Pplus_carry x' y')
- | xO x', xO y' => xI (Pplus x' y')
- | xO x', xH => xO (Psucc x')
- | xH, xI y' => xI (Psucc y')
- | xH, xO y' => xO (Psucc y')
- | xH, xH => xI xH
+ | p~1, q~1 => (Pplus_carry p q)~1
+ | p~1, q~0 => (Pplus_carry p q)~0
+ | p~1, 1 => (Psucc p)~1
+ | p~0, q~1 => (Pplus_carry p q)~0
+ | p~0, q~0 => (Pplus p q)~1
+ | p~0, 1 => (Psucc p)~0
+ | 1, q~1 => (Psucc q)~1
+ | 1, q~0 => (Psucc q)~0
+ | 1, 1 => 1~1
end.
Unset Boxed Definitions.
Infix "+" := Pplus : positive_scope.
-Open Local Scope positive_scope.
-
(** From binary positive numbers to Peano natural numbers *)
-Fixpoint Pmult_nat (x:positive) (pow2:nat) {struct x} : nat :=
+Fixpoint Pmult_nat (x:positive) (pow2:nat) : nat :=
match x with
- | xI x' => (pow2 + Pmult_nat x' (pow2 + pow2))%nat
- | xO x' => Pmult_nat x' (pow2 + pow2)%nat
- | xH => pow2
+ | p~1 => (pow2 + Pmult_nat p (pow2 + pow2))%nat
+ | p~0 => Pmult_nat p (pow2 + pow2)%nat
+ | 1 => pow2
end.
-Definition nat_of_P (x:positive) := Pmult_nat x 1.
+Definition nat_of_P (x:positive) := Pmult_nat x (S O).
(** From Peano natural numbers to binary positive numbers *)
Fixpoint P_of_succ_nat (n:nat) : positive :=
match n with
- | O => xH
- | S x' => Psucc (P_of_succ_nat x')
+ | O => 1
+ | S x => Psucc (P_of_succ_nat x)
end.
(** Operation x -> 2*x-1 *)
Fixpoint Pdouble_minus_one (x:positive) : positive :=
match x with
- | xI x' => xI (xO x')
- | xO x' => xI (Pdouble_minus_one x')
- | xH => xH
+ | p~1 => p~0~1
+ | p~0 => (Pdouble_minus_one p)~1
+ | 1 => 1
end.
(** Predecessor *)
Definition Ppred (x:positive) :=
match x with
- | xI x' => xO x'
- | xO x' => Pdouble_minus_one x'
- | xH => xH
+ | p~1 => p~0
+ | p~0 => Pdouble_minus_one p
+ | 1 => 1
end.
(** An auxiliary type for subtraction *)
Inductive positive_mask : Set :=
- | IsNul : positive_mask
- | IsPos : positive -> positive_mask
- | IsNeg : positive_mask.
+| IsNul : positive_mask
+| IsPos : positive -> positive_mask
+| IsNeg : positive_mask.
(** Operation x -> 2*x+1 *)
Definition Pdouble_plus_one_mask (x:positive_mask) :=
match x with
- | IsNul => IsPos xH
- | IsNeg => IsNeg
- | IsPos p => IsPos (xI p)
+ | IsNul => IsPos 1
+ | IsNeg => IsNeg
+ | IsPos p => IsPos p~1
end.
(** Operation x -> 2*x *)
Definition Pdouble_mask (x:positive_mask) :=
match x with
- | IsNul => IsNul
- | IsNeg => IsNeg
- | IsPos p => IsPos (xO p)
+ | IsNul => IsNul
+ | IsNeg => IsNeg
+ | IsPos p => IsPos p~0
end.
(** Operation x -> 2*x-2 *)
Definition Pdouble_minus_two (x:positive) :=
match x with
- | xI x' => IsPos (xO (xO x'))
- | xO x' => IsPos (xO (Pdouble_minus_one x'))
- | xH => IsNul
+ | p~1 => IsPos p~0~0
+ | p~0 => IsPos (Pdouble_minus_one p)~0
+ | 1 => IsNul
end.
(** Subtraction of binary positive numbers into a positive numbers mask *)
Fixpoint Pminus_mask (x y:positive) {struct y} : positive_mask :=
match x, y with
- | xI x', xI y' => Pdouble_mask (Pminus_mask x' y')
- | xI x', xO y' => Pdouble_plus_one_mask (Pminus_mask x' y')
- | xI x', xH => IsPos (xO x')
- | xO x', xI y' => Pdouble_plus_one_mask (Pminus_mask_carry x' y')
- | xO x', xO y' => Pdouble_mask (Pminus_mask x' y')
- | xO x', xH => IsPos (Pdouble_minus_one x')
- | xH, xH => IsNul
- | xH, _ => IsNeg
+ | p~1, q~1 => Pdouble_mask (Pminus_mask p q)
+ | p~1, q~0 => Pdouble_plus_one_mask (Pminus_mask p q)
+ | p~1, 1 => IsPos p~0
+ | p~0, q~1 => Pdouble_plus_one_mask (Pminus_mask_carry p q)
+ | p~0, q~0 => Pdouble_mask (Pminus_mask p q)
+ | p~0, 1 => IsPos (Pdouble_minus_one p)
+ | 1, 1 => IsNul
+ | 1, _ => IsNeg
end
-
- with Pminus_mask_carry (x y:positive) {struct y} : positive_mask :=
+
+with Pminus_mask_carry (x y:positive) {struct y} : positive_mask :=
match x, y with
- | xI x', xI y' => Pdouble_plus_one_mask (Pminus_mask_carry x' y')
- | xI x', xO y' => Pdouble_mask (Pminus_mask x' y')
- | xI x', xH => IsPos (Pdouble_minus_one x')
- | xO x', xI y' => Pdouble_mask (Pminus_mask_carry x' y')
- | xO x', xO y' => Pdouble_plus_one_mask (Pminus_mask_carry x' y')
- | xO x', xH => Pdouble_minus_two x'
- | xH, _ => IsNeg
+ | p~1, q~1 => Pdouble_plus_one_mask (Pminus_mask_carry p q)
+ | p~1, q~0 => Pdouble_mask (Pminus_mask p q)
+ | p~1, 1 => IsPos (Pdouble_minus_one p)
+ | p~0, q~1 => Pdouble_mask (Pminus_mask_carry p q)
+ | p~0, q~0 => Pdouble_plus_one_mask (Pminus_mask_carry p q)
+ | p~0, 1 => Pdouble_minus_two p
+ | 1, _ => IsNeg
end.
(** Subtraction of binary positive numbers x and y, returns 1 if x<=y *)
Definition Pminus (x y:positive) :=
match Pminus_mask x y with
- | IsPos z => z
- | _ => xH
+ | IsPos z => z
+ | _ => 1
end.
Infix "-" := Pminus : positive_scope.
(** Multiplication on binary positive numbers *)
-Fixpoint Pmult (x y:positive) {struct x} : positive :=
+Fixpoint Pmult (x y:positive) : positive :=
match x with
- | xI x' => y + xO (Pmult x' y)
- | xO x' => xO (Pmult x' y)
- | xH => y
+ | p~1 => y + (Pmult p y)~0
+ | p~0 => (Pmult p y)~0
+ | 1 => y
end.
Infix "*" := Pmult : positive_scope.
@@ -196,9 +213,9 @@ Infix "*" := Pmult : positive_scope.
Definition Pdiv2 (z:positive) :=
match z with
- | xH => xH
- | xO p => p
- | xI p => p
+ | 1 => 1
+ | p~0 => p
+ | p~1 => p
end.
Infix "/" := Pdiv2 : positive_scope.
@@ -207,25 +224,51 @@ Infix "/" := Pdiv2 : positive_scope.
Fixpoint Pcompare (x y:positive) (r:comparison) {struct y} : comparison :=
match x, y with
- | xI x', xI y' => Pcompare x' y' r
- | xI x', xO y' => Pcompare x' y' Gt
- | xI x', xH => Gt
- | xO x', xI y' => Pcompare x' y' Lt
- | xO x', xO y' => Pcompare x' y' r
- | xO x', xH => Gt
- | xH, xI y' => Lt
- | xH, xO y' => Lt
- | xH, xH => r
+ | p~1, q~1 => Pcompare p q r
+ | p~1, q~0 => Pcompare p q Gt
+ | p~1, 1 => Gt
+ | p~0, q~1 => Pcompare p q Lt
+ | p~0, q~0 => Pcompare p q r
+ | p~0, 1 => Gt
+ | 1, q~1 => Lt
+ | 1, q~0 => Lt
+ | 1, 1 => r
end.
Infix "?=" := Pcompare (at level 70, no associativity) : positive_scope.
+Definition Plt (x y:positive) := (Pcompare x y Eq) = Lt.
+Definition Pgt (x y:positive) := (Pcompare x y Eq) = Gt.
+Definition Ple (x y:positive) := (Pcompare x y Eq) <> Gt.
+Definition Pge (x y:positive) := (Pcompare x y Eq) <> Lt.
+
+Infix "<=" := Ple : positive_scope.
+Infix "<" := Plt : positive_scope.
+Infix ">=" := Pge : positive_scope.
+Infix ">" := Pgt : positive_scope.
+
+Notation "x <= y <= z" := (x <= y /\ y <= z) : positive_scope.
+Notation "x <= y < z" := (x <= y /\ y < z) : positive_scope.
+Notation "x < y < z" := (x < y /\ y < z) : positive_scope.
+Notation "x < y <= z" := (x < y /\ y <= z) : positive_scope.
+
+
+Definition Pmin (p p' : positive) := match Pcompare p p' Eq with
+ | Lt | Eq => p
+ | Gt => p'
+ end.
+
+Definition Pmax (p p' : positive) := match Pcompare p p' Eq with
+ | Lt | Eq => p'
+ | Gt => p
+ end.
+
(**********************************************************************)
(** Miscellaneous properties of binary positive numbers *)
-Lemma ZL11 : forall p:positive, p = xH \/ p <> xH.
+Lemma ZL11 : forall p:positive, p = 1 \/ p <> 1.
Proof.
-intros x; case x; intros; (left; reflexivity) || (right; discriminate).
+ intros x; case x; intros; (left; reflexivity) || (right; discriminate).
Qed.
(**********************************************************************)
@@ -233,78 +276,70 @@ Qed.
(** Specification of [xI] in term of [Psucc] and [xO] *)
-Lemma xI_succ_xO : forall p:positive, xI p = Psucc (xO p).
+Lemma xI_succ_xO : forall p:positive, p~1 = Psucc p~0.
Proof.
-reflexivity.
+ reflexivity.
Qed.
Lemma Psucc_discr : forall p:positive, p <> Psucc p.
Proof.
-intro x; destruct x as [p| p| ]; discriminate.
+ destruct p; discriminate.
Qed.
(** Successor and double *)
Lemma Psucc_o_double_minus_one_eq_xO :
- forall p:positive, Psucc (Pdouble_minus_one p) = xO p.
+ forall p:positive, Psucc (Pdouble_minus_one p) = p~0.
Proof.
-intro x; induction x as [x IHx| x| ]; simpl in |- *; try rewrite IHx;
- reflexivity.
+ induction p; simpl; f_equal; auto.
Qed.
Lemma Pdouble_minus_one_o_succ_eq_xI :
- forall p:positive, Pdouble_minus_one (Psucc p) = xI p.
+ forall p:positive, Pdouble_minus_one (Psucc p) = p~1.
Proof.
-intro x; induction x as [x IHx| x| ]; simpl in |- *; try rewrite IHx;
- reflexivity.
+ induction p; simpl; f_equal; auto.
Qed.
Lemma xO_succ_permute :
- forall p:positive, xO (Psucc p) = Psucc (Psucc (xO p)).
+ forall p:positive, (Psucc p)~0 = Psucc (Psucc p~0).
Proof.
-intro y; induction y as [y Hrecy| y Hrecy| ]; simpl in |- *; auto.
+ induction p; simpl; auto.
Qed.
Lemma double_moins_un_xO_discr :
- forall p:positive, Pdouble_minus_one p <> xO p.
+ forall p:positive, Pdouble_minus_one p <> p~0.
Proof.
-intro x; destruct x as [p| p| ]; discriminate.
+ destruct p; discriminate.
Qed.
(** Successor and predecessor *)
-Lemma Psucc_not_one : forall p:positive, Psucc p <> xH.
+Lemma Psucc_not_one : forall p:positive, Psucc p <> 1.
Proof.
-intro x; destruct x as [x| x| ]; discriminate.
+ destruct p; discriminate.
Qed.
Lemma Ppred_succ : forall p:positive, Ppred (Psucc p) = p.
Proof.
-intro x; destruct x as [p| p| ]; [ idtac | idtac | simpl in |- *; auto ];
- (induction p as [p IHp| | ]; [ idtac | reflexivity | reflexivity ]);
- simpl in |- *; simpl in IHp; try rewrite <- IHp; reflexivity.
+ intros [[p|p| ]|[p|p| ]| ]; simpl; auto.
+ f_equal; apply Pdouble_minus_one_o_succ_eq_xI.
Qed.
-Lemma Psucc_pred : forall p:positive, p = xH \/ Psucc (Ppred p) = p.
+Lemma Psucc_pred : forall p:positive, p = 1 \/ Psucc (Ppred p) = p.
Proof.
-intro x; induction x as [x Hrecx| x Hrecx| ];
- [ simpl in |- *; auto
- | simpl in |- *; intros; right; apply Psucc_o_double_minus_one_eq_xO
- | auto ].
+ induction p; simpl; auto.
+ right; apply Psucc_o_double_minus_one_eq_xO.
Qed.
+Ltac destr_eq H := discriminate H || (try (injection H; clear H; intro H)).
+
(** Injectivity of successor *)
Lemma Psucc_inj : forall p q:positive, Psucc p = Psucc q -> p = q.
Proof.
-intro x; induction x; intro y; destruct y as [y| y| ]; simpl in |- *; intro H;
- discriminate H || (try (injection H; clear H; intro H)).
-rewrite (IHx y H); reflexivity.
-absurd (Psucc x = xH); [ apply Psucc_not_one | assumption ].
-apply f_equal with (1 := H); assumption.
-absurd (Psucc y = xH);
- [ apply Psucc_not_one | symmetry in |- *; assumption ].
-reflexivity.
+ induction p; intros [q|q| ] H; simpl in *; destr_eq H; f_equal; auto.
+ elim (Psucc_not_one p); auto.
+ elim (Psucc_not_one q); auto.
Qed.
(**********************************************************************)
@@ -312,656 +347,758 @@ Qed.
(** Specification of [Psucc] in term of [Pplus] *)
-Lemma Pplus_one_succ_r : forall p:positive, Psucc p = p + xH.
+Lemma Pplus_one_succ_r : forall p:positive, Psucc p = p + 1.
Proof.
-intro q; destruct q as [p| p| ]; reflexivity.
+ destruct p; reflexivity.
Qed.
-Lemma Pplus_one_succ_l : forall p:positive, Psucc p = xH + p.
+Lemma Pplus_one_succ_l : forall p:positive, Psucc p = 1 + p.
Proof.
-intro q; destruct q as [p| p| ]; reflexivity.
+ destruct p; reflexivity.
Qed.
(** Specification of [Pplus_carry] *)
Theorem Pplus_carry_spec :
- forall p q:positive, Pplus_carry p q = Psucc (p + q).
+ forall p q:positive, Pplus_carry p q = Psucc (p + q).
Proof.
-intro x; induction x as [p IHp| p IHp| ]; intro y;
- [ destruct y as [p0| p0| ]
- | destruct y as [p0| p0| ]
- | destruct y as [p| p| ] ]; simpl in |- *; auto; rewrite IHp;
- auto.
+ induction p; destruct q; simpl; f_equal; auto.
Qed.
(** Commutativity *)
Theorem Pplus_comm : forall p q:positive, p + q = q + p.
Proof.
-intro x; induction x as [p IHp| p IHp| ]; intro y;
- [ destruct y as [p0| p0| ]
- | destruct y as [p0| p0| ]
- | destruct y as [p| p| ] ]; simpl in |- *; auto;
- try do 2 rewrite Pplus_carry_spec; rewrite IHp; auto.
+ induction p; destruct q; simpl; f_equal; auto.
+ rewrite 2 Pplus_carry_spec; f_equal; auto.
Qed.
(** Permutation of [Pplus] and [Psucc] *)
Theorem Pplus_succ_permute_r :
- forall p q:positive, p + Psucc q = Psucc (p + q).
+ forall p q:positive, p + Psucc q = Psucc (p + q).
Proof.
-intro x; induction x as [p IHp| p IHp| ]; intro y;
- [ destruct y as [p0| p0| ]
- | destruct y as [p0| p0| ]
- | destruct y as [p| p| ] ]; simpl in |- *; auto;
- [ rewrite Pplus_carry_spec; rewrite IHp; auto
- | rewrite Pplus_carry_spec; auto
- | destruct p; simpl in |- *; auto
- | rewrite IHp; auto
- | destruct p; simpl in |- *; auto ].
+ induction p; destruct q; simpl; f_equal;
+ auto using Pplus_one_succ_r; rewrite Pplus_carry_spec; auto.
Qed.
Theorem Pplus_succ_permute_l :
- forall p q:positive, Psucc p + q = Psucc (p + q).
+ forall p q:positive, Psucc p + q = Psucc (p + q).
Proof.
-intros x y; rewrite Pplus_comm; rewrite Pplus_comm with (p := x);
- apply Pplus_succ_permute_r.
+ intros p q; rewrite Pplus_comm, (Pplus_comm p);
+ apply Pplus_succ_permute_r.
Qed.
Theorem Pplus_carry_pred_eq_plus :
- forall p q:positive, q <> xH -> Pplus_carry p (Ppred q) = p + q.
+ forall p q:positive, q <> 1 -> Pplus_carry p (Ppred q) = p + q.
Proof.
-intros q z H; elim (Psucc_pred z);
- [ intro; absurd (z = xH); auto
- | intros E; pattern z at 2 in |- *; rewrite <- E;
- rewrite Pplus_succ_permute_r; rewrite Pplus_carry_spec;
- trivial ].
-Qed.
+ intros p q H; rewrite Pplus_carry_spec, <- Pplus_succ_permute_r; f_equal.
+ destruct (Psucc_pred q); [ elim H; assumption | assumption ].
+Qed.
(** No neutral for addition on strictly positive numbers *)
Lemma Pplus_no_neutral : forall p q:positive, q + p <> p.
Proof.
-intro x; induction x; intro y; destruct y as [y| y| ]; simpl in |- *; intro H;
- discriminate H || injection H; clear H; intro H; apply (IHx y H).
+ induction p as [p IHp|p IHp| ]; intros [q|q| ] H;
+ destr_eq H; apply (IHp q H).
Qed.
Lemma Pplus_carry_no_neutral :
- forall p q:positive, Pplus_carry q p <> Psucc p.
+ forall p q:positive, Pplus_carry q p <> Psucc p.
Proof.
-intros x y H; absurd (y + x = x);
- [ apply Pplus_no_neutral
- | apply Psucc_inj; rewrite <- Pplus_carry_spec; assumption ].
+ intros p q H; elim (Pplus_no_neutral p q).
+ apply Psucc_inj; rewrite <- Pplus_carry_spec; assumption.
Qed.
(** Simplification *)
Lemma Pplus_carry_plus :
- forall p q r s:positive, Pplus_carry p r = Pplus_carry q s -> p + r = q + s.
+ forall p q r s:positive, Pplus_carry p r = Pplus_carry q s -> p + r = q + s.
Proof.
-intros x y z t H; apply Psucc_inj; do 2 rewrite <- Pplus_carry_spec;
- assumption.
+ intros p q r s H; apply Psucc_inj; do 2 rewrite <- Pplus_carry_spec;
+ assumption.
Qed.
Lemma Pplus_reg_r : forall p q r:positive, p + r = q + r -> p = q.
Proof.
-intros x y z; generalize x y; clear x y.
-induction z as [z| z| ].
- destruct x as [x| x| ]; intro y; destruct y as [y| y| ]; simpl in |- *;
- intro H; discriminate H || (try (injection H; clear H; intro H)).
- rewrite IHz with (1 := Pplus_carry_plus _ _ _ _ H); reflexivity.
- absurd (Pplus_carry x z = Psucc z);
- [ apply Pplus_carry_no_neutral | assumption ].
- rewrite IHz with (1 := H); reflexivity.
- symmetry in H; absurd (Pplus_carry y z = Psucc z);
- [ apply Pplus_carry_no_neutral | assumption ].
- reflexivity.
- destruct x as [x| x| ]; intro y; destruct y as [y| y| ]; simpl in |- *;
- intro H; discriminate H || (try (injection H; clear H; intro H)).
- rewrite IHz with (1 := H); reflexivity.
- absurd (x + z = z); [ apply Pplus_no_neutral | assumption ].
- rewrite IHz with (1 := H); reflexivity.
- symmetry in H; absurd (y + z = z);
- [ apply Pplus_no_neutral | assumption ].
- reflexivity.
- intros H x y; apply Psucc_inj; do 2 rewrite Pplus_one_succ_r; assumption.
+ intros p q r; revert p q; induction r.
+ intros [p|p| ] [q|q| ] H; simpl; destr_eq H;
+ f_equal; auto using Pplus_carry_plus;
+ contradict H; auto using Pplus_carry_no_neutral.
+ intros [p|p| ] [q|q| ] H; simpl; destr_eq H; f_equal; auto;
+ contradict H; auto using Pplus_no_neutral.
+ intros p q H; apply Psucc_inj; do 2 rewrite Pplus_one_succ_r; assumption.
Qed.
Lemma Pplus_reg_l : forall p q r:positive, p + q = p + r -> q = r.
Proof.
-intros x y z H; apply Pplus_reg_r with (r := x);
- rewrite Pplus_comm with (p := z); rewrite Pplus_comm with (p := y);
- assumption.
+ intros p q r H; apply Pplus_reg_r with (r:=p).
+ rewrite (Pplus_comm r), (Pplus_comm q); assumption.
Qed.
Lemma Pplus_carry_reg_r :
- forall p q r:positive, Pplus_carry p r = Pplus_carry q r -> p = q.
+ forall p q r:positive, Pplus_carry p r = Pplus_carry q r -> p = q.
Proof.
-intros x y z H; apply Pplus_reg_r with (r := z); apply Pplus_carry_plus;
- assumption.
+ intros p q r H; apply Pplus_reg_r with (r:=r); apply Pplus_carry_plus;
+ assumption.
Qed.
Lemma Pplus_carry_reg_l :
- forall p q r:positive, Pplus_carry p q = Pplus_carry p r -> q = r.
+ forall p q r:positive, Pplus_carry p q = Pplus_carry p r -> q = r.
Proof.
-intros x y z H; apply Pplus_reg_r with (r := x);
- rewrite Pplus_comm with (p := z); rewrite Pplus_comm with (p := y);
- apply Pplus_carry_plus; assumption.
+ intros p q r H; apply Pplus_reg_r with (r:=p);
+ rewrite (Pplus_comm r), (Pplus_comm q); apply Pplus_carry_plus; assumption.
Qed.
(** Addition on positive is associative *)
Theorem Pplus_assoc : forall p q r:positive, p + (q + r) = p + q + r.
Proof.
-intros x y; generalize x; clear x.
-induction y as [y| y| ]; intro x.
- destruct x as [x| x| ]; intro z; destruct z as [z| z| ]; simpl in |- *;
- repeat rewrite Pplus_carry_spec; repeat rewrite Pplus_succ_permute_r;
- repeat rewrite Pplus_succ_permute_l;
- reflexivity || (repeat apply f_equal with (A := positive));
- apply IHy.
- destruct x as [x| x| ]; intro z; destruct z as [z| z| ]; simpl in |- *;
- repeat rewrite Pplus_carry_spec; repeat rewrite Pplus_succ_permute_r;
- repeat rewrite Pplus_succ_permute_l;
- reflexivity || (repeat apply f_equal with (A := positive));
- apply IHy.
- intro z; rewrite Pplus_comm with (p := xH);
- do 2 rewrite <- Pplus_one_succ_r; rewrite Pplus_succ_permute_l;
- rewrite Pplus_succ_permute_r; reflexivity.
+ induction p.
+ intros [q|q| ] [r|r| ]; simpl; f_equal; auto;
+ rewrite ?Pplus_carry_spec, ?Pplus_succ_permute_r,
+ ?Pplus_succ_permute_l, ?Pplus_one_succ_r; f_equal; auto.
+ intros [q|q| ] [r|r| ]; simpl; f_equal; auto;
+ rewrite ?Pplus_carry_spec, ?Pplus_succ_permute_r,
+ ?Pplus_succ_permute_l, ?Pplus_one_succ_r; f_equal; auto.
+ intros p r; rewrite <- 2 Pplus_one_succ_l, Pplus_succ_permute_l; auto.
Qed.
(** Commutation of addition with the double of a positive number *)
+Lemma Pplus_xO : forall m n : positive, (m + n)~0 = m~0 + n~0.
+Proof.
+ destruct n; destruct m; simpl; auto.
+Qed.
+
Lemma Pplus_xI_double_minus_one :
- forall p q:positive, xO (p + q) = xI p + Pdouble_minus_one q.
+ forall p q:positive, (p + q)~0 = p~1 + Pdouble_minus_one q.
Proof.
-intros; change (xI p) with (xO p + xH) in |- *.
-rewrite <- Pplus_assoc; rewrite <- Pplus_one_succ_l;
- rewrite Psucc_o_double_minus_one_eq_xO.
-reflexivity.
+ intros; change (p~1) with (p~0 + 1).
+ rewrite <- Pplus_assoc, <- Pplus_one_succ_l, Psucc_o_double_minus_one_eq_xO.
+ reflexivity.
Qed.
Lemma Pplus_xO_double_minus_one :
- forall p q:positive, Pdouble_minus_one (p + q) = xO p + Pdouble_minus_one q.
+ forall p q:positive, Pdouble_minus_one (p + q) = p~0 + Pdouble_minus_one q.
Proof.
-induction p as [p IHp| p IHp| ]; destruct q as [q| q| ]; simpl in |- *;
- try rewrite Pplus_carry_spec; try rewrite Pdouble_minus_one_o_succ_eq_xI;
- try rewrite IHp; try rewrite Pplus_xI_double_minus_one;
- try reflexivity.
- rewrite <- Psucc_o_double_minus_one_eq_xO; rewrite Pplus_one_succ_l;
- reflexivity.
+ induction p as [p IHp| p IHp| ]; destruct q; simpl;
+ rewrite ?Pplus_carry_spec, ?Pdouble_minus_one_o_succ_eq_xI,
+ ?Pplus_xI_double_minus_one; try reflexivity.
+ rewrite IHp; auto.
+ rewrite <- Psucc_o_double_minus_one_eq_xO, Pplus_one_succ_l; reflexivity.
Qed.
(** Misc *)
-Lemma Pplus_diag : forall p:positive, p + p = xO p.
+Lemma Pplus_diag : forall p:positive, p + p = p~0.
Proof.
-intro x; induction x; simpl in |- *; try rewrite Pplus_carry_spec;
- try rewrite IHx; reflexivity.
+ induction p as [p IHp| p IHp| ]; simpl;
+ try rewrite ?Pplus_carry_spec, ?IHp; reflexivity.
Qed.
(**********************************************************************)
-(** Peano induction on binary positive positive numbers *)
+(** Peano induction and recursion on binary positive positive numbers *)
+(** (a nice proof from Conor McBride, see "The view from the left") *)
-Fixpoint plus_iter (x y:positive) {struct x} : positive :=
- match x with
- | xH => Psucc y
- | xO x => plus_iter x (plus_iter x y)
- | xI x => plus_iter x (plus_iter x (Psucc y))
+Inductive PeanoView : positive -> Type :=
+| PeanoOne : PeanoView 1
+| PeanoSucc : forall p, PeanoView p -> PeanoView (Psucc p).
+
+Fixpoint peanoView_xO p (q:PeanoView p) : PeanoView (p~0) :=
+ match q in PeanoView x return PeanoView (x~0) with
+ | PeanoOne => PeanoSucc _ PeanoOne
+ | PeanoSucc _ q => PeanoSucc _ (PeanoSucc _ (peanoView_xO _ q))
end.
-Lemma plus_iter_eq_plus : forall p q:positive, plus_iter p q = p + q.
-Proof.
-intro x; induction x as [p IHp| p IHp| ]; intro y;
- [ destruct y as [p0| p0| ]
- | destruct y as [p0| p0| ]
- | destruct y as [p| p| ] ]; simpl in |- *; reflexivity || (do 2 rewrite IHp);
- rewrite Pplus_assoc; rewrite Pplus_diag; try reflexivity.
-rewrite Pplus_carry_spec; rewrite <- Pplus_succ_permute_r; reflexivity.
-rewrite Pplus_one_succ_r; reflexivity.
-Qed.
+Fixpoint peanoView_xI p (q:PeanoView p) : PeanoView (p~1) :=
+ match q in PeanoView x return PeanoView (x~1) with
+ | PeanoOne => PeanoSucc _ (PeanoSucc _ PeanoOne)
+ | PeanoSucc _ q => PeanoSucc _ (PeanoSucc _ (peanoView_xI _ q))
+ end.
+
+Fixpoint peanoView p : PeanoView p :=
+ match p return PeanoView p with
+ | 1 => PeanoOne
+ | p~0 => peanoView_xO p (peanoView p)
+ | p~1 => peanoView_xI p (peanoView p)
+ end.
-Lemma plus_iter_xO : forall p:positive, plus_iter p p = xO p.
+Definition PeanoView_iter (P:positive->Type)
+ (a:P 1) (f:forall p, P p -> P (Psucc p)) :=
+ (fix iter p (q:PeanoView p) : P p :=
+ match q in PeanoView p return P p with
+ | PeanoOne => a
+ | PeanoSucc _ q => f _ (iter _ q)
+ end).
+
+Require Import Eqdep_dec EqdepFacts.
+
+Theorem eq_dep_eq_positive :
+ forall (P:positive->Type) (p:positive) (x y:P p),
+ eq_dep positive P p x p y -> x = y.
Proof.
-intro; rewrite <- Pplus_diag; apply plus_iter_eq_plus.
+ apply eq_dep_eq_dec.
+ decide equality.
Qed.
-Lemma plus_iter_xI : forall p:positive, Psucc (plus_iter p p) = xI p.
+Theorem PeanoViewUnique : forall p (q q':PeanoView p), q = q'.
Proof.
-intro; rewrite xI_succ_xO; rewrite <- Pplus_diag;
- apply (f_equal (A:=positive)); apply plus_iter_eq_plus.
+ intros.
+ induction q as [ | p q IHq ].
+ apply eq_dep_eq_positive.
+ cut (1=1). pattern 1 at 1 2 5, q'. destruct q'. trivial.
+ destruct p0; intros; discriminate.
+ trivial.
+ apply eq_dep_eq_positive.
+ cut (Psucc p=Psucc p). pattern (Psucc p) at 1 2 5, q'. destruct q'.
+ intro. destruct p; discriminate.
+ intro. unfold p0 in H. apply Psucc_inj in H.
+ generalize q'. rewrite H. intro.
+ rewrite (IHq q'0).
+ trivial.
+ trivial.
Qed.
-Lemma iterate_add :
- forall P:positive -> Type,
- (forall n:positive, P n -> P (Psucc n)) ->
- forall p q:positive, P q -> P (plus_iter p q).
-Proof.
-intros P H; induction p; simpl in |- *; intros.
-apply IHp; apply IHp; apply H; assumption.
-apply IHp; apply IHp; assumption.
-apply H; assumption.
-Defined.
+Definition Prect (P:positive->Type) (a:P 1) (f:forall p, P p -> P (Psucc p))
+ (p:positive) :=
+ PeanoView_iter P a f p (peanoView p).
-(** Peano induction *)
+Theorem Prect_succ : forall (P:positive->Type) (a:P 1)
+ (f:forall p, P p -> P (Psucc p)) (p:positive),
+ Prect P a f (Psucc p) = f _ (Prect P a f p).
+Proof.
+ intros.
+ unfold Prect.
+ rewrite (PeanoViewUnique _ (peanoView (Psucc p)) (PeanoSucc _ (peanoView p))).
+ trivial.
+Qed.
-Theorem Pind :
- forall P:positive -> Prop,
- P xH -> (forall n:positive, P n -> P (Psucc n)) -> forall p:positive, P p.
+Theorem Prect_base : forall (P:positive->Type) (a:P 1)
+ (f:forall p, P p -> P (Psucc p)), Prect P a f 1 = a.
Proof.
-intros P H1 Hsucc n; induction n.
-rewrite <- plus_iter_xI; apply Hsucc; apply iterate_add; assumption.
-rewrite <- plus_iter_xO; apply iterate_add; assumption.
-assumption.
+ trivial.
Qed.
-(** Peano recursion *)
+Definition Prec (P:positive->Set) := Prect P.
-Definition Prec (A:Set) (a:A) (f:positive -> A -> A) :
- positive -> A :=
- (fix Prec (p:positive) : A :=
- match p with
- | xH => a
- | xO p => iterate_add (fun _ => A) f p p (Prec p)
- | xI p => f (plus_iter p p) (iterate_add (fun _ => A) f p p (Prec p))
- end).
+(** Peano induction *)
+
+Definition Pind (P:positive->Prop) := Prect P.
(** Peano case analysis *)
Theorem Pcase :
- forall P:positive -> Prop,
- P xH -> (forall n:positive, P (Psucc n)) -> forall p:positive, P p.
+ forall P:positive -> Prop,
+ P 1 -> (forall n:positive, P (Psucc n)) -> forall p:positive, P p.
Proof.
-intros; apply Pind; auto.
+ intros; apply Pind; auto.
Qed.
-(*
-Check
- (let fact := Prec positive xH (fun p r => Psucc p * r) in
- let seven := xI (xI xH) in
- let five_thousand_forty :=
- xO (xO (xO (xO (xI (xI (xO (xI (xI (xI (xO (xO xH))))))))))) in
- refl_equal _:fact seven = five_thousand_forty).
-*)
-
(**********************************************************************)
(** Properties of multiplication on binary positive numbers *)
(** One is right neutral for multiplication *)
-Lemma Pmult_1_r : forall p:positive, p * xH = p.
+Lemma Pmult_1_r : forall p:positive, p * 1 = p.
Proof.
-intro x; induction x; simpl in |- *.
- rewrite IHx; reflexivity.
- rewrite IHx; reflexivity.
+ induction p; simpl; f_equal; auto.
+Qed.
+
+(** Successor and multiplication *)
+
+Lemma Pmult_Sn_m : forall n m : positive, (Psucc n) * m = m + n * m.
+Proof.
+ induction n as [n IHn | n IHn | ]; simpl; intro m.
+ rewrite IHn, Pplus_assoc, Pplus_diag, <-Pplus_xO; reflexivity.
reflexivity.
+ symmetry; apply Pplus_diag.
Qed.
(** Right reduction properties for multiplication *)
-Lemma Pmult_xO_permute_r : forall p q:positive, p * xO q = xO (p * q).
+Lemma Pmult_xO_permute_r : forall p q:positive, p * q~0 = (p * q)~0.
Proof.
-intros x y; induction x; simpl in |- *.
- rewrite IHx; reflexivity.
- rewrite IHx; reflexivity.
- reflexivity.
+ intros p q; induction p; simpl; do 2 (f_equal; auto).
Qed.
-Lemma Pmult_xI_permute_r : forall p q:positive, p * xI q = p + xO (p * q).
+Lemma Pmult_xI_permute_r : forall p q:positive, p * q~1 = p + (p * q)~0.
Proof.
-intros x y; induction x; simpl in |- *.
- rewrite IHx; do 2 rewrite Pplus_assoc; rewrite Pplus_comm with (p := y);
- reflexivity.
- rewrite IHx; reflexivity.
- reflexivity.
+ intros p q; induction p as [p IHp|p IHp| ]; simpl; f_equal; auto.
+ rewrite IHp, 2 Pplus_assoc, (Pplus_comm p); reflexivity.
Qed.
(** Commutativity of multiplication *)
Theorem Pmult_comm : forall p q:positive, p * q = q * p.
Proof.
-intros x y; induction y; simpl in |- *.
- rewrite <- IHy; apply Pmult_xI_permute_r.
- rewrite <- IHy; apply Pmult_xO_permute_r.
- apply Pmult_1_r.
+ intros p q; induction q as [q IHq|q IHq| ]; simpl; try rewrite <- IHq;
+ auto using Pmult_xI_permute_r, Pmult_xO_permute_r, Pmult_1_r.
Qed.
(** Distributivity of multiplication over addition *)
Theorem Pmult_plus_distr_l :
- forall p q r:positive, p * (q + r) = p * q + p * r.
-Proof.
-intros x y z; induction x; simpl in |- *.
- rewrite IHx; rewrite <- Pplus_assoc with (q := xO (x * y));
- rewrite Pplus_assoc with (p := xO (x * y));
- rewrite Pplus_comm with (p := xO (x * y));
- rewrite <- Pplus_assoc with (q := xO (x * y));
- rewrite Pplus_assoc with (q := z); reflexivity.
- rewrite IHx; reflexivity.
+ forall p q r:positive, p * (q + r) = p * q + p * r.
+Proof.
+ intros p q r; induction p as [p IHp|p IHp| ]; simpl.
+ rewrite IHp. set (m:=(p*q)~0). set (n:=(p*r)~0).
+ change ((p*q+p*r)~0) with (m+n).
+ rewrite 2 Pplus_assoc; f_equal.
+ rewrite <- 2 Pplus_assoc; f_equal.
+ apply Pplus_comm.
+ f_equal; auto.
reflexivity.
Qed.
Theorem Pmult_plus_distr_r :
- forall p q r:positive, (p + q) * r = p * r + q * r.
+ forall p q r:positive, (p + q) * r = p * r + q * r.
Proof.
-intros x y z; do 3 rewrite Pmult_comm with (q := z); apply Pmult_plus_distr_l.
+ intros p q r; do 3 rewrite Pmult_comm with (q:=r); apply Pmult_plus_distr_l.
Qed.
(** Associativity of multiplication *)
Theorem Pmult_assoc : forall p q r:positive, p * (q * r) = p * q * r.
Proof.
-intro x; induction x as [x| x| ]; simpl in |- *; intros y z.
- rewrite IHx; rewrite Pmult_plus_distr_r; reflexivity.
- rewrite IHx; reflexivity.
+ induction p as [p IHp| p IHp | ]; simpl; intros q r.
+ rewrite IHp; rewrite Pmult_plus_distr_r; reflexivity.
+ rewrite IHp; reflexivity.
reflexivity.
Qed.
(** Parity properties of multiplication *)
-Lemma Pmult_xI_mult_xO_discr : forall p q r:positive, xI p * r <> xO q * r.
+Lemma Pmult_xI_mult_xO_discr : forall p q r:positive, p~1 * r <> q~0 * r.
Proof.
-intros x y z; induction z as [| z IHz| ]; try discriminate.
-intro H; apply IHz; clear IHz.
-do 2 rewrite Pmult_xO_permute_r in H.
-injection H; clear H; intro H; exact H.
+ intros p q r; induction r; try discriminate.
+ rewrite 2 Pmult_xO_permute_r; intro H; destr_eq H; auto.
Qed.
-Lemma Pmult_xO_discr : forall p q:positive, xO p * q <> q.
+Lemma Pmult_xO_discr : forall p q:positive, p~0 * q <> q.
Proof.
-intros x y; induction y; try discriminate.
-rewrite Pmult_xO_permute_r; injection; assumption.
+ intros p q; induction q; try discriminate.
+ rewrite Pmult_xO_permute_r; injection; assumption.
Qed.
(** Simplification properties of multiplication *)
Theorem Pmult_reg_r : forall p q r:positive, p * r = q * r -> p = q.
Proof.
-intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ];
- intros z H; reflexivity || apply (f_equal (A:=positive)) || apply False_ind.
- simpl in H; apply IHp with (xO z); simpl in |- *;
- do 2 rewrite Pmult_xO_permute_r; apply Pplus_reg_l with (1 := H).
- apply Pmult_xI_mult_xO_discr with (1 := H).
- simpl in H; rewrite Pplus_comm in H; apply Pplus_no_neutral with (1 := H).
- symmetry in H; apply Pmult_xI_mult_xO_discr with (1 := H).
- apply IHp with (xO z); simpl in |- *; do 2 rewrite Pmult_xO_permute_r;
- assumption.
- apply Pmult_xO_discr with (1 := H).
- simpl in H; symmetry in H; rewrite Pplus_comm in H;
- apply Pplus_no_neutral with (1 := H).
- symmetry in H; apply Pmult_xO_discr with (1 := H).
+ induction p as [p IHp| p IHp| ]; intros [q|q| ] r H;
+ reflexivity || apply (f_equal (A:=positive)) || apply False_ind.
+ apply IHp with (r~0); simpl in *;
+ rewrite 2 Pmult_xO_permute_r; apply Pplus_reg_l with (1:=H).
+ apply Pmult_xI_mult_xO_discr with (1:=H).
+ simpl in H; rewrite Pplus_comm in H; apply Pplus_no_neutral with (1:=H).
+ symmetry in H; apply Pmult_xI_mult_xO_discr with (1:=H).
+ apply IHp with (r~0); simpl; rewrite 2 Pmult_xO_permute_r; assumption.
+ apply Pmult_xO_discr with (1:= H).
+ simpl in H; symmetry in H; rewrite Pplus_comm in H;
+ apply Pplus_no_neutral with (1:=H).
+ symmetry in H; apply Pmult_xO_discr with (1:=H).
Qed.
Theorem Pmult_reg_l : forall p q r:positive, r * p = r * q -> p = q.
Proof.
-intros x y z H; apply Pmult_reg_r with (r := z).
-rewrite Pmult_comm with (p := x); rewrite Pmult_comm with (p := y);
- assumption.
+ intros p q r H; apply Pmult_reg_r with (r:=r).
+ rewrite (Pmult_comm p), (Pmult_comm q); assumption.
Qed.
(** Inversion of multiplication *)
-Lemma Pmult_1_inversion_l : forall p q:positive, p * q = xH -> p = xH.
+Lemma Pmult_1_inversion_l : forall p q:positive, p * q = 1 -> p = 1.
Proof.
-intros x y; destruct x as [p| p| ]; simpl in |- *.
- destruct y as [p0| p0| ]; intro; discriminate.
- intro; discriminate.
- reflexivity.
+ intros [p|p| ] [q|q| ] H; destr_eq H; auto.
Qed.
(**********************************************************************)
(** Properties of comparison on binary positive numbers *)
+Theorem Pcompare_refl : forall p:positive, (p ?= p) Eq = Eq.
+ induction p; auto.
+Qed.
+
+(* A generalization of Pcompare_refl *)
+
+Theorem Pcompare_refl_id : forall (p : positive) (r : comparison), (p ?= p) r = r.
+ induction p; auto.
+Qed.
+
Theorem Pcompare_not_Eq :
- forall p q:positive, (p ?= q) Gt <> Eq /\ (p ?= q) Lt <> Eq.
+ forall p q:positive, (p ?= q) Gt <> Eq /\ (p ?= q) Lt <> Eq.
Proof.
-intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ];
- split; simpl in |- *; auto; discriminate || (elim (IHp q); auto).
+ induction p as [p IHp| p IHp| ]; intros [q| q| ]; split; simpl; auto;
+ discriminate || (elim (IHp q); auto).
Qed.
Theorem Pcompare_Eq_eq : forall p q:positive, (p ?= q) Eq = Eq -> p = q.
Proof.
-intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ];
- simpl in |- *; auto; intro H;
- [ rewrite (IHp q); trivial
- | absurd ((p ?= q) Gt = Eq);
- [ elim (Pcompare_not_Eq p q); auto | assumption ]
- | discriminate H
- | absurd ((p ?= q) Lt = Eq);
- [ elim (Pcompare_not_Eq p q); auto | assumption ]
- | rewrite (IHp q); auto
- | discriminate H
- | discriminate H
- | discriminate H ].
+ induction p; intros [q| q| ] H; simpl in *; auto;
+ try discriminate H; try (f_equal; auto; fail).
+ destruct (Pcompare_not_Eq p q) as (H',_); elim H'; auto.
+ destruct (Pcompare_not_Eq p q) as (_,H'); elim H'; auto.
Qed.
Lemma Pcompare_Gt_Lt :
- forall p q:positive, (p ?= q) Gt = Lt -> (p ?= q) Eq = Lt.
+ forall p q:positive, (p ?= q) Gt = Lt -> (p ?= q) Eq = Lt.
Proof.
-intro x; induction x as [x Hrecx| x Hrecx| ]; intro y;
- [ induction y as [y Hrecy| y Hrecy| ]
- | induction y as [y Hrecy| y Hrecy| ]
- | induction y as [y Hrecy| y Hrecy| ] ]; simpl in |- *;
- auto; discriminate || intros H; discriminate H.
+ induction p; intros [q|q| ] H; simpl; auto; discriminate.
+Qed.
+
+Lemma Pcompare_eq_Lt :
+ forall p q : positive, (p ?= q) Eq = Lt <-> (p ?= q) Gt = Lt.
+Proof.
+ intros p q; split; [| apply Pcompare_Gt_Lt].
+ revert q; induction p; intros [q|q| ] H; simpl; auto; discriminate.
Qed.
Lemma Pcompare_Lt_Gt :
- forall p q:positive, (p ?= q) Lt = Gt -> (p ?= q) Eq = Gt.
+ forall p q:positive, (p ?= q) Lt = Gt -> (p ?= q) Eq = Gt.
Proof.
-intro x; induction x as [x Hrecx| x Hrecx| ]; intro y;
- [ induction y as [y Hrecy| y Hrecy| ]
- | induction y as [y Hrecy| y Hrecy| ]
- | induction y as [y Hrecy| y Hrecy| ] ]; simpl in |- *;
- auto; discriminate || intros H; discriminate H.
+ induction p; intros [q|q| ] H; simpl; auto; discriminate.
+Qed.
+
+Lemma Pcompare_eq_Gt :
+ forall p q : positive, (p ?= q) Eq = Gt <-> (p ?= q) Lt = Gt.
+Proof.
+ intros p q; split; [| apply Pcompare_Lt_Gt].
+ revert q; induction p; intros [q|q| ] H; simpl; auto; discriminate.
Qed.
Lemma Pcompare_Lt_Lt :
- forall p q:positive, (p ?= q) Lt = Lt -> (p ?= q) Eq = Lt \/ p = q.
+ forall p q:positive, (p ?= q) Lt = Lt -> (p ?= q) Eq = Lt \/ p = q.
Proof.
-intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ];
- simpl in |- *; auto; try discriminate; intro H2; elim (IHp q H2);
- auto; intros E; rewrite E; auto.
+ induction p as [p IHp| p IHp| ]; intros [q|q| ] H; simpl in *; auto;
+ destruct (IHp q H); subst; auto.
+Qed.
+
+Lemma Pcompare_Lt_eq_Lt :
+ forall p q:positive, (p ?= q) Lt = Lt <-> (p ?= q) Eq = Lt \/ p = q.
+Proof.
+ intros p q; split; [apply Pcompare_Lt_Lt |].
+ intros [H|H]; [|subst; apply Pcompare_refl_id].
+ revert q H; induction p; intros [q|q| ] H; simpl in *;
+ auto; discriminate.
Qed.
Lemma Pcompare_Gt_Gt :
- forall p q:positive, (p ?= q) Gt = Gt -> (p ?= q) Eq = Gt \/ p = q.
+ forall p q:positive, (p ?= q) Gt = Gt -> (p ?= q) Eq = Gt \/ p = q.
+Proof.
+ induction p as [p IHp|p IHp| ]; intros [q|q| ] H; simpl in *; auto;
+ destruct (IHp q H); subst; auto.
+Qed.
+
+Lemma Pcompare_Gt_eq_Gt :
+ forall p q:positive, (p ?= q) Gt = Gt <-> (p ?= q) Eq = Gt \/ p = q.
Proof.
-intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ];
- simpl in |- *; auto; try discriminate; intro H2; elim (IHp q H2);
- auto; intros E; rewrite E; auto.
+ intros p q; split; [apply Pcompare_Gt_Gt |].
+ intros [H|H]; [|subst; apply Pcompare_refl_id].
+ revert q H; induction p; intros [q|q| ] H; simpl in *;
+ auto; discriminate.
Qed.
Lemma Dcompare : forall r:comparison, r = Eq \/ r = Lt \/ r = Gt.
Proof.
-simple induction r; auto.
+ destruct r; auto.
Qed.
Ltac ElimPcompare c1 c2 :=
elim (Dcompare ((c1 ?= c2) Eq));
- [ idtac | let x := fresh "H" in
- (intro x; case x; clear x) ].
-
-Theorem Pcompare_refl : forall p:positive, (p ?= p) Eq = Eq.
-intro x; induction x as [x Hrecx| x Hrecx| ]; auto.
-Qed.
+ [ idtac | let x := fresh "H" in (intro x; case x; clear x) ].
Lemma Pcompare_antisym :
- forall (p q:positive) (r:comparison),
- CompOpp ((p ?= q) r) = (q ?= p) (CompOpp r).
+ forall (p q:positive) (r:comparison),
+ CompOpp ((p ?= q) r) = (q ?= p) (CompOpp r).
Proof.
-intro x; induction x as [p IHp| p IHp| ]; intro y;
- [ destruct y as [p0| p0| ]
- | destruct y as [p0| p0| ]
- | destruct y as [p| p| ] ]; intro r;
- reflexivity ||
- (symmetry in |- *; assumption) || discriminate H || simpl in |- *;
- apply IHp || (try rewrite IHp); try reflexivity.
+ induction p as [p IHp|p IHp| ]; intros [q|q| ] r; simpl; auto;
+ rewrite IHp; auto.
Qed.
Lemma ZC1 : forall p q:positive, (p ?= q) Eq = Gt -> (q ?= p) Eq = Lt.
Proof.
-intros; change Eq with (CompOpp Eq) in |- *.
-rewrite <- Pcompare_antisym; rewrite H; reflexivity.
+ intros p q H; change Eq with (CompOpp Eq).
+ rewrite <- Pcompare_antisym, H; reflexivity.
Qed.
Lemma ZC2 : forall p q:positive, (p ?= q) Eq = Lt -> (q ?= p) Eq = Gt.
Proof.
-intros; change Eq with (CompOpp Eq) in |- *.
-rewrite <- Pcompare_antisym; rewrite H; reflexivity.
+ intros p q H; change Eq with (CompOpp Eq).
+ rewrite <- Pcompare_antisym, H; reflexivity.
Qed.
Lemma ZC3 : forall p q:positive, (p ?= q) Eq = Eq -> (q ?= p) Eq = Eq.
Proof.
-intros; change Eq with (CompOpp Eq) in |- *.
-rewrite <- Pcompare_antisym; rewrite H; reflexivity.
+ intros p q H; change Eq with (CompOpp Eq).
+ rewrite <- Pcompare_antisym, H; reflexivity.
Qed.
Lemma ZC4 : forall p q:positive, (p ?= q) Eq = CompOpp ((q ?= p) Eq).
Proof.
-intros; change Eq at 1 with (CompOpp Eq) in |- *.
-symmetry in |- *; apply Pcompare_antisym.
+ intros; change Eq at 1 with (CompOpp Eq).
+ symmetry; apply Pcompare_antisym.
+Qed.
+
+(** Comparison and the successor *)
+
+Lemma Pcompare_p_Sp : forall p : positive, (p ?= Psucc p) Eq = Lt.
+Proof.
+ induction p; simpl in *;
+ [ elim (Pcompare_eq_Lt p (Psucc p)); auto |
+ apply Pcompare_refl_id | reflexivity].
+Qed.
+
+Theorem Pcompare_p_Sq : forall p q : positive,
+ (p ?= Psucc q) Eq = Lt <-> (p ?= q) Eq = Lt \/ p = q.
+Proof.
+ intros p q; split.
+ (* -> *)
+ revert p q; induction p as [p IHp|p IHp| ]; intros [q|q| ] H; simpl in *;
+ try (left; reflexivity); try (right; reflexivity).
+ destruct (IHp q (Pcompare_Gt_Lt _ _ H)); subst; auto.
+ destruct (Pcompare_eq_Lt p q); auto.
+ destruct p; discriminate.
+ left; destruct (IHp q H);
+ [ elim (Pcompare_Lt_eq_Lt p q); auto | subst; apply Pcompare_refl_id].
+ destruct (Pcompare_Lt_Lt p q H); subst; auto.
+ destruct p; discriminate.
+ (* <- *)
+ intros [H|H]; [|subst; apply Pcompare_p_Sp].
+ revert q H; induction p; intros [q|q| ] H; simpl in *;
+ auto; try discriminate.
+ destruct (Pcompare_eq_Lt p (Psucc q)); auto.
+ apply Pcompare_Gt_Lt; auto.
+ destruct (Pcompare_Lt_Lt p q H); subst; auto using Pcompare_p_Sp.
+ destruct (Pcompare_Lt_eq_Lt p q); auto.
+Qed.
+
+(** 1 is the least positive number *)
+
+Lemma Pcompare_1 : forall p, ~ (p ?= 1) Eq = Lt.
+Proof.
+ destruct p; discriminate.
+Qed.
+
+(** Properties of the strict order on positive numbers *)
+
+Lemma Plt_1 : forall p, ~ p < 1.
+Proof.
+ exact Pcompare_1.
+Qed.
+
+Lemma Plt_lt_succ : forall n m : positive, n < m -> n < Psucc m.
+Proof.
+ unfold Plt; intros n m H; apply <- Pcompare_p_Sq; auto.
+Qed.
+
+Lemma Plt_irrefl : forall p : positive, ~ p < p.
+Proof.
+ unfold Plt; intro p; rewrite Pcompare_refl; discriminate.
+Qed.
+
+Lemma Plt_trans : forall n m p : positive, n < m -> m < p -> n < p.
+Proof.
+ intros n m p; induction p using Pind; intros H H0.
+ elim (Plt_1 _ H0).
+ apply Plt_lt_succ.
+ destruct (Pcompare_p_Sq m p) as (H',_); destruct (H' H0); subst; auto.
+Qed.
+
+Theorem Plt_ind : forall (A : positive -> Prop) (n : positive),
+ A (Psucc n) ->
+ (forall m : positive, n < m -> A m -> A (Psucc m)) ->
+ forall m : positive, n < m -> A m.
+Proof.
+ intros A n AB AS m. induction m using Pind; intros H.
+ elim (Plt_1 _ H).
+ destruct (Pcompare_p_Sq n m) as (H',_); destruct (H' H); subst; auto.
Qed.
(**********************************************************************)
(** Properties of subtraction on binary positive numbers *)
+Lemma Ppred_minus : forall p, Ppred p = Pminus p 1.
+Proof.
+ destruct p; auto.
+Qed.
+
+Definition Ppred_mask (p : positive_mask) :=
+match p with
+| IsPos 1 => IsNul
+| IsPos q => IsPos (Ppred q)
+| IsNul => IsNeg
+| IsNeg => IsNeg
+end.
+
+Lemma Pminus_mask_succ_r :
+ forall p q : positive, Pminus_mask p (Psucc q) = Pminus_mask_carry p q.
+Proof.
+ induction p ; destruct q; simpl; f_equal; auto; destruct p; auto.
+Qed.
+
+Theorem Pminus_mask_carry_spec :
+ forall p q : positive, Pminus_mask_carry p q = Ppred_mask (Pminus_mask p q).
+Proof.
+ induction p as [p IHp|p IHp| ]; destruct q; simpl;
+ try reflexivity; try rewrite IHp;
+ destruct (Pminus_mask p q) as [|[r|r| ]|] || destruct p; auto.
+Qed.
+
+Theorem Pminus_succ_r : forall p q : positive, p - (Psucc q) = Ppred (p - q).
+Proof.
+ intros p q; unfold Pminus;
+ rewrite Pminus_mask_succ_r, Pminus_mask_carry_spec.
+ destruct (Pminus_mask p q) as [|[r|r| ]|]; auto.
+Qed.
+
Lemma double_eq_zero_inversion :
- forall p:positive_mask, Pdouble_mask p = IsNul -> p = IsNul.
+ forall p:positive_mask, Pdouble_mask p = IsNul -> p = IsNul.
Proof.
-destruct p; simpl in |- *; [ trivial | discriminate 1 | discriminate 1 ].
+ destruct p; simpl; intros; trivial; discriminate.
Qed.
Lemma double_plus_one_zero_discr :
- forall p:positive_mask, Pdouble_plus_one_mask p <> IsNul.
+ forall p:positive_mask, Pdouble_plus_one_mask p <> IsNul.
Proof.
-simple induction p; intros; discriminate.
+ destruct p; discriminate.
Qed.
Lemma double_plus_one_eq_one_inversion :
- forall p:positive_mask, Pdouble_plus_one_mask p = IsPos xH -> p = IsNul.
+ forall p:positive_mask, Pdouble_plus_one_mask p = IsPos 1 -> p = IsNul.
Proof.
-destruct p; simpl in |- *; [ trivial | discriminate 1 | discriminate 1 ].
+ destruct p; simpl; intros; trivial; discriminate.
Qed.
Lemma double_eq_one_discr :
- forall p:positive_mask, Pdouble_mask p <> IsPos xH.
+ forall p:positive_mask, Pdouble_mask p <> IsPos 1.
Proof.
-simple induction p; intros; discriminate.
+ destruct p; discriminate.
Qed.
Theorem Pminus_mask_diag : forall p:positive, Pminus_mask p p = IsNul.
Proof.
-intro x; induction x as [p IHp| p IHp| ];
- [ simpl in |- *; rewrite IHp; simpl in |- *; trivial
- | simpl in |- *; rewrite IHp; auto
- | auto ].
+ induction p as [p IHp| p IHp| ]; simpl; try rewrite IHp; auto.
+Qed.
+
+Lemma Pminus_mask_carry_diag : forall p, Pminus_mask_carry p p = IsNeg.
+Proof.
+ induction p as [p IHp| p IHp| ]; simpl; try rewrite IHp; auto.
+Qed.
+
+Lemma Pminus_mask_IsNeg : forall p q:positive,
+ Pminus_mask p q = IsNeg -> Pminus_mask_carry p q = IsNeg.
+Proof.
+ induction p as [p IHp|p IHp| ]; intros [q|q| ] H; simpl in *; auto;
+ try discriminate; unfold Pdouble_mask, Pdouble_plus_one_mask in H;
+ specialize IHp with q.
+ destruct (Pminus_mask p q); try discriminate; rewrite IHp; auto.
+ destruct (Pminus_mask p q); simpl; auto; try discriminate.
+ destruct (Pminus_mask_carry p q); simpl; auto; try discriminate.
+ destruct (Pminus_mask p q); try discriminate; rewrite IHp; auto.
Qed.
Lemma ZL10 :
- forall p q:positive,
- Pminus_mask p q = IsPos xH -> Pminus_mask_carry p q = IsNul.
-Proof.
-intro x; induction x as [p| p| ]; intro y; destruct y as [q| q| ];
- simpl in |- *; intro H; try discriminate H;
- [ absurd (Pdouble_mask (Pminus_mask p q) = IsPos xH);
- [ apply double_eq_one_discr | assumption ]
- | assert (Heq : Pminus_mask p q = IsNul);
- [ apply double_plus_one_eq_one_inversion; assumption
- | rewrite Heq; reflexivity ]
- | assert (Heq : Pminus_mask_carry p q = IsNul);
- [ apply double_plus_one_eq_one_inversion; assumption
- | rewrite Heq; reflexivity ]
- | absurd (Pdouble_mask (Pminus_mask p q) = IsPos xH);
- [ apply double_eq_one_discr | assumption ]
- | destruct p; simpl in |- *;
- [ discriminate H | discriminate H | reflexivity ] ].
+ forall p q:positive,
+ Pminus_mask p q = IsPos 1 -> Pminus_mask_carry p q = IsNul.
+Proof.
+ induction p; intros [q|q| ] H; simpl in *; try discriminate.
+ elim (double_eq_one_discr _ H).
+ rewrite (double_plus_one_eq_one_inversion _ H); auto.
+ rewrite (double_plus_one_eq_one_inversion _ H); auto.
+ elim (double_eq_one_discr _ H).
+ destruct p; simpl; auto; discriminate.
Qed.
(** Properties of subtraction valid only for x>y *)
Lemma Pminus_mask_Gt :
- forall p q:positive,
- (p ?= q) Eq = Gt ->
+ forall p q:positive,
+ (p ?= q) Eq = Gt ->
exists h : positive,
- Pminus_mask p q = IsPos h /\
- q + h = p /\ (h = xH \/ Pminus_mask_carry p q = IsPos (Ppred h)).
-Proof.
-intro x; induction x as [p| p| ]; intro y; destruct y as [q| q| ];
- simpl in |- *; intro H; try discriminate H.
- destruct (IHp q H) as [z [H4 [H6 H7]]]; exists (xO z); split.
- rewrite H4; reflexivity.
- split.
- simpl in |- *; rewrite H6; reflexivity.
- right; clear H6; destruct (ZL11 z) as [H8| H8];
- [ rewrite H8; rewrite H8 in H4; rewrite ZL10;
- [ reflexivity | assumption ]
- | clear H4; destruct H7 as [H9| H9];
- [ absurd (z = xH); assumption
- | rewrite H9; clear H9; destruct z as [p0| p0| ];
- [ reflexivity | reflexivity | absurd (xH = xH); trivial ] ] ].
- case Pcompare_Gt_Gt with (1 := H);
- [ intros H3; elim (IHp q H3); intros z H4; exists (xI z); elim H4;
- intros H5 H6; elim H6; intros H7 H8; split;
- [ simpl in |- *; rewrite H5; auto
- | split;
- [ simpl in |- *; rewrite H7; trivial
- | right;
- change (Pdouble_mask (Pminus_mask p q) = IsPos (Ppred (xI z)))
- in |- *; rewrite H5; auto ] ]
- | intros H3; exists xH; rewrite H3; split;
- [ simpl in |- *; rewrite Pminus_mask_diag; auto | split; auto ] ].
- exists (xO p); auto.
- destruct (IHp q) as [z [H4 [H6 H7]]].
- apply Pcompare_Lt_Gt; assumption.
- destruct (ZL11 z) as [vZ| ];
- [ exists xH; split;
- [ rewrite ZL10; [ reflexivity | rewrite vZ in H4; assumption ]
- | split;
- [ simpl in |- *; rewrite Pplus_one_succ_r; rewrite <- vZ;
- rewrite H6; trivial
- | auto ] ]
- | exists (xI (Ppred z)); destruct H7 as [| H8];
- [ absurd (z = xH); assumption
- | split;
- [ rewrite H8; trivial
- | split;
- [ simpl in |- *; rewrite Pplus_carry_pred_eq_plus;
- [ rewrite H6; trivial | assumption ]
- | right; rewrite H8; reflexivity ] ] ] ].
- destruct (IHp q H) as [z [H4 [H6 H7]]].
- exists (xO z); split;
- [ rewrite H4; auto
- | split;
- [ simpl in |- *; rewrite H6; reflexivity
- | right;
- change
- (Pdouble_plus_one_mask (Pminus_mask_carry p q) =
- IsPos (Pdouble_minus_one z)) in |- *;
- destruct (ZL11 z) as [H8| H8];
- [ rewrite H8; simpl in |- *;
- assert (H9 : Pminus_mask_carry p q = IsNul);
- [ apply ZL10; rewrite <- H8; assumption
- | rewrite H9; reflexivity ]
- | destruct H7 as [H9| H9];
- [ absurd (z = xH); auto
- | rewrite H9; destruct z as [p0| p0| ]; simpl in |- *;
- [ reflexivity
- | reflexivity
- | absurd (xH = xH); [ assumption | reflexivity ] ] ] ] ] ].
- exists (Pdouble_minus_one p); split;
- [ reflexivity
- | clear IHp; split;
- [ destruct p; simpl in |- *;
- [ reflexivity
- | rewrite Psucc_o_double_minus_one_eq_xO; reflexivity
- | reflexivity ]
- | destruct p; [ right | right | left ]; reflexivity ] ].
+ Pminus_mask p q = IsPos h /\
+ q + h = p /\ (h = 1 \/ Pminus_mask_carry p q = IsPos (Ppred h)).
+Proof.
+ induction p as [p IHp| p IHp| ]; intros [q| q| ] H; simpl in *;
+ try discriminate H.
+ (* p~1, q~1 *)
+ destruct (IHp q H) as (r & U & V & W); exists (r~0); rewrite ?U, ?V; auto.
+ repeat split; auto; right.
+ destruct (ZL11 r) as [EQ|NE]; [|destruct W as [|W]; [elim NE; auto|]].
+ rewrite ZL10; subst; auto.
+ rewrite W; simpl; destruct r; auto; elim NE; auto.
+ (* p~1, q~0 *)
+ destruct (Pcompare_Gt_Gt _ _ H) as [H'|H']; clear H; rename H' into H.
+ destruct (IHp q H) as (r & U & V & W); exists (r~1); rewrite ?U, ?V; auto.
+ exists 1; subst; rewrite Pminus_mask_diag; auto.
+ (* p~1, 1 *)
+ exists (p~0); auto.
+ (* p~0, q~1 *)
+ destruct (IHp q (Pcompare_Lt_Gt _ _ H)) as (r & U & V & W).
+ destruct (ZL11 r) as [EQ|NE]; [|destruct W as [|W]; [elim NE; auto|]].
+ exists 1; subst; rewrite ZL10, Pplus_one_succ_r; auto.
+ exists ((Ppred r)~1); rewrite W, Pplus_carry_pred_eq_plus, V; auto.
+ (* p~0, q~0 *)
+ destruct (IHp q H) as (r & U & V & W); exists (r~0); rewrite ?U, ?V; auto.
+ repeat split; auto; right.
+ destruct (ZL11 r) as [EQ|NE]; [|destruct W as [|W]; [elim NE; auto|]].
+ rewrite ZL10; subst; auto.
+ rewrite W; simpl; destruct r; auto; elim NE; auto.
+ (* p~0, 1 *)
+ exists (Pdouble_minus_one p); repeat split; destruct p; simpl; auto.
+ rewrite Psucc_o_double_minus_one_eq_xO; auto.
Qed.
Theorem Pplus_minus :
- forall p q:positive, (p ?= q) Eq = Gt -> q + (p - q) = p.
+ forall p q:positive, (p ?= q) Eq = Gt -> q + (p - q) = p.
+Proof.
+ intros p q H; destruct (Pminus_mask_Gt p q H) as (r & U & V & _).
+ unfold Pminus; rewrite U; simpl; auto.
+Qed.
+
+(** When x<y, the substraction of x by y returns 1 *)
+
+Lemma Pminus_mask_Lt : forall p q:positive, p<q -> Pminus_mask p q = IsNeg.
+Proof.
+ unfold Plt; induction p as [p IHp|p IHp| ]; destruct q; simpl; intros;
+ try discriminate; try rewrite IHp; auto.
+ apply Pcompare_Gt_Lt; auto.
+ destruct (Pcompare_Lt_Lt _ _ H).
+ rewrite Pminus_mask_IsNeg; simpl; auto.
+ subst; rewrite Pminus_mask_carry_diag; auto.
+Qed.
+
+Lemma Pminus_Lt : forall p q:positive, p<q -> p-q = 1.
Proof.
-intros x y H; elim Pminus_mask_Gt with (1 := H); intros z H1; elim H1;
- intros H2 H3; elim H3; intros H4 H5; unfold Pminus in |- *;
- rewrite H2; exact H4.
+ intros; unfold Plt, Pminus; rewrite Pminus_mask_Lt; auto.
Qed.
+
+(** The substraction of x by x returns 1 *)
+
+Lemma Pminus_Eq : forall p:positive, p-p = 1.
+Proof.
+ intros; unfold Pminus; rewrite Pminus_mask_diag; auto.
+Qed.
+
+(** Number of digits in a number *)
+
+Fixpoint Psize (p:positive) : nat :=
+ match p with
+ | 1 => S O
+ | p~1 => S (Psize p)
+ | p~0 => S (Psize p)
+ end.
+
+Lemma Psize_monotone : forall p q, (p?=q) Eq = Lt -> (Psize p <= Psize q)%nat.
+Proof.
+ assert (le0 : forall n, (0<=n)%nat) by (induction n; auto).
+ assert (leS : forall n m, (n<=m -> S n <= S m)%nat) by (induction 1; auto).
+ induction p; destruct q; simpl; auto; intros; try discriminate.
+ intros; generalize (Pcompare_Gt_Lt _ _ H); auto.
+ intros; destruct (Pcompare_Lt_Lt _ _ H); auto; subst; auto.
+Qed.
+
+
+
+
+
diff --git a/theories/NArith/NArith.v b/theories/NArith/NArith.v
index 019ef5f7..6ece00d7 100644
--- a/theories/NArith/NArith.v
+++ b/theories/NArith/NArith.v
@@ -6,11 +6,13 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: NArith.v 9210 2006-10-05 10:12:15Z barras $ *)
+(* $Id: NArith.v 10751 2008-04-04 10:23:35Z herbelin $ *)
(** Library for binary natural numbers *)
Require Export BinPos.
Require Export BinNat.
+Require Export Nnat.
+Require Export Ndigits.
Require Export NArithRing.
diff --git a/theories/NArith/Ndec.v b/theories/NArith/Ndec.v
index df2da25b..5bd9a378 100644
--- a/theories/NArith/Ndec.v
+++ b/theories/NArith/Ndec.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Ndec.v 8733 2006-04-25 22:52:18Z letouzey $ i*)
+(*i $Id: Ndec.v 10739 2008-04-01 14:45:20Z herbelin $ i*)
Require Import Bool.
Require Import Sumbool.
@@ -37,6 +37,13 @@ Proof.
induction p; destruct p'; simpl; intros; try discriminate; auto.
Qed.
+Lemma Peqb_complete : forall p p', Peqb p p' = true -> p = p'.
+Proof.
+ intros.
+ apply Pcompare_Eq_eq.
+ apply Peqb_Pcompare; auto.
+Qed.
+
Lemma Pcompare_Peqb : forall p p', Pcompare p p' Eq = Eq -> Peqb p p' = true.
Proof.
intros; rewrite <- (Pcompare_Eq_eq _ _ H).
@@ -208,205 +215,220 @@ Qed.
(** A boolean order on [N] *)
-Definition Nle (a b:N) := leb (nat_of_N a) (nat_of_N b).
+Definition Nleb (a b:N) := leb (nat_of_N a) (nat_of_N b).
-Lemma Nle_Ncompare : forall a b, Nle a b = true <-> Ncompare a b <> Gt.
+Lemma Nleb_Nle : forall a b, Nleb a b = true <-> Nle a b.
Proof.
- intros; rewrite nat_of_Ncompare.
- unfold Nle; apply leb_compare.
+ intros; unfold Nle; rewrite nat_of_Ncompare.
+ unfold Nleb; apply leb_compare.
Qed.
-Lemma Nle_refl : forall a, Nle a a = true.
+Lemma Nleb_refl : forall a, Nleb a a = true.
Proof.
- intro. unfold Nle in |- *. apply leb_correct. apply le_n.
+ intro. unfold Nleb in |- *. apply leb_correct. apply le_n.
Qed.
-Lemma Nle_antisym :
- forall a b, Nle a b = true -> Nle b a = true -> a = b.
+Lemma Nleb_antisym :
+ forall a b, Nleb a b = true -> Nleb b a = true -> a = b.
Proof.
- unfold Nle in |- *. intros. rewrite <- (N_of_nat_of_N a). rewrite <- (N_of_nat_of_N b).
+ unfold Nleb in |- *. intros. rewrite <- (N_of_nat_of_N a). rewrite <- (N_of_nat_of_N b).
rewrite (le_antisym _ _ (leb_complete _ _ H) (leb_complete _ _ H0)). reflexivity.
Qed.
-Lemma Nle_trans :
- forall a b c, Nle a b = true -> Nle b c = true -> Nle a c = true.
+Lemma Nleb_trans :
+ forall a b c, Nleb a b = true -> Nleb b c = true -> Nleb a c = true.
Proof.
- unfold Nle in |- *. intros. apply leb_correct. apply le_trans with (m := nat_of_N b).
+ unfold Nleb in |- *. intros. apply leb_correct. apply le_trans with (m := nat_of_N b).
apply leb_complete. assumption.
apply leb_complete. assumption.
Qed.
-Lemma Nle_lt_trans :
+Lemma Nleb_ltb_trans :
forall a b c,
- Nle a b = true -> Nle c b = false -> Nle c a = false.
+ Nleb a b = true -> Nleb c b = false -> Nleb c a = false.
Proof.
- unfold Nle in |- *. intros. apply leb_correct_conv. apply le_lt_trans with (m := nat_of_N b).
+ unfold Nleb in |- *. intros. apply leb_correct_conv. apply le_lt_trans with (m := nat_of_N b).
apply leb_complete. assumption.
apply leb_complete_conv. assumption.
Qed.
-Lemma Nlt_le_trans :
+Lemma Nltb_leb_trans :
forall a b c,
- Nle b a = false -> Nle b c = true -> Nle c a = false.
+ Nleb b a = false -> Nleb b c = true -> Nleb c a = false.
Proof.
- unfold Nle in |- *. intros. apply leb_correct_conv. apply lt_le_trans with (m := nat_of_N b).
+ unfold Nleb in |- *. intros. apply leb_correct_conv. apply lt_le_trans with (m := nat_of_N b).
apply leb_complete_conv. assumption.
apply leb_complete. assumption.
Qed.
-Lemma Nlt_trans :
+Lemma Nltb_trans :
forall a b c,
- Nle b a = false -> Nle c b = false -> Nle c a = false.
+ Nleb b a = false -> Nleb c b = false -> Nleb c a = false.
Proof.
- unfold Nle in |- *. intros. apply leb_correct_conv. apply lt_trans with (m := nat_of_N b).
+ unfold Nleb in |- *. intros. apply leb_correct_conv. apply lt_trans with (m := nat_of_N b).
apply leb_complete_conv. assumption.
apply leb_complete_conv. assumption.
Qed.
-Lemma Nlt_le_weak : forall a b:N, Nle b a = false -> Nle a b = true.
+Lemma Nltb_leb_weak : forall a b:N, Nleb b a = false -> Nleb a b = true.
Proof.
- unfold Nle in |- *. intros. apply leb_correct. apply lt_le_weak.
+ unfold Nleb in |- *. intros. apply leb_correct. apply lt_le_weak.
apply leb_complete_conv. assumption.
Qed.
-Lemma Nle_double_mono :
+Lemma Nleb_double_mono :
forall a b,
- Nle a b = true -> Nle (Ndouble a) (Ndouble b) = true.
+ Nleb a b = true -> Nleb (Ndouble a) (Ndouble b) = true.
Proof.
- unfold Nle in |- *. intros. rewrite nat_of_Ndouble. rewrite nat_of_Ndouble. apply leb_correct.
+ unfold Nleb in |- *. intros. rewrite nat_of_Ndouble. rewrite nat_of_Ndouble. apply leb_correct.
simpl in |- *. apply plus_le_compat. apply leb_complete. assumption.
apply plus_le_compat. apply leb_complete. assumption.
apply le_n.
Qed.
-Lemma Nle_double_plus_one_mono :
+Lemma Nleb_double_plus_one_mono :
forall a b,
- Nle a b = true ->
- Nle (Ndouble_plus_one a) (Ndouble_plus_one b) = true.
+ Nleb a b = true ->
+ Nleb (Ndouble_plus_one a) (Ndouble_plus_one b) = true.
Proof.
- unfold Nle in |- *. intros. rewrite nat_of_Ndouble_plus_one. rewrite nat_of_Ndouble_plus_one.
+ unfold Nleb in |- *. intros. rewrite nat_of_Ndouble_plus_one. rewrite nat_of_Ndouble_plus_one.
apply leb_correct. apply le_n_S. simpl in |- *. apply plus_le_compat. apply leb_complete.
assumption.
apply plus_le_compat. apply leb_complete. assumption.
apply le_n.
Qed.
-Lemma Nle_double_mono_conv :
+Lemma Nleb_double_mono_conv :
forall a b,
- Nle (Ndouble a) (Ndouble b) = true -> Nle a b = true.
+ Nleb (Ndouble a) (Ndouble b) = true -> Nleb a b = true.
Proof.
- unfold Nle in |- *. intros a b. rewrite nat_of_Ndouble. rewrite nat_of_Ndouble. intro.
+ unfold Nleb in |- *. intros a b. rewrite nat_of_Ndouble. rewrite nat_of_Ndouble. intro.
apply leb_correct. apply (mult_S_le_reg_l 1). apply leb_complete. assumption.
Qed.
-Lemma Nle_double_plus_one_mono_conv :
+Lemma Nleb_double_plus_one_mono_conv :
forall a b,
- Nle (Ndouble_plus_one a) (Ndouble_plus_one b) = true ->
- Nle a b = true.
+ Nleb (Ndouble_plus_one a) (Ndouble_plus_one b) = true ->
+ Nleb a b = true.
Proof.
- unfold Nle in |- *. intros a b. rewrite nat_of_Ndouble_plus_one. rewrite nat_of_Ndouble_plus_one.
+ unfold Nleb in |- *. intros a b. rewrite nat_of_Ndouble_plus_one. rewrite nat_of_Ndouble_plus_one.
intro. apply leb_correct. apply (mult_S_le_reg_l 1). apply le_S_n. apply leb_complete.
assumption.
Qed.
-Lemma Nlt_double_mono :
+Lemma Nltb_double_mono :
forall a b,
- Nle a b = false -> Nle (Ndouble a) (Ndouble b) = false.
+ Nleb a b = false -> Nleb (Ndouble a) (Ndouble b) = false.
Proof.
- intros. elim (sumbool_of_bool (Nle (Ndouble a) (Ndouble b))). intro H0.
- rewrite (Nle_double_mono_conv _ _ H0) in H. discriminate H.
+ intros. elim (sumbool_of_bool (Nleb (Ndouble a) (Ndouble b))). intro H0.
+ rewrite (Nleb_double_mono_conv _ _ H0) in H. discriminate H.
trivial.
Qed.
-Lemma Nlt_double_plus_one_mono :
+Lemma Nltb_double_plus_one_mono :
forall a b,
- Nle a b = false ->
- Nle (Ndouble_plus_one a) (Ndouble_plus_one b) = false.
+ Nleb a b = false ->
+ Nleb (Ndouble_plus_one a) (Ndouble_plus_one b) = false.
Proof.
- intros. elim (sumbool_of_bool (Nle (Ndouble_plus_one a) (Ndouble_plus_one b))). intro H0.
- rewrite (Nle_double_plus_one_mono_conv _ _ H0) in H. discriminate H.
+ intros. elim (sumbool_of_bool (Nleb (Ndouble_plus_one a) (Ndouble_plus_one b))). intro H0.
+ rewrite (Nleb_double_plus_one_mono_conv _ _ H0) in H. discriminate H.
trivial.
Qed.
-Lemma Nlt_double_mono_conv :
+Lemma Nltb_double_mono_conv :
forall a b,
- Nle (Ndouble a) (Ndouble b) = false -> Nle a b = false.
+ Nleb (Ndouble a) (Ndouble b) = false -> Nleb a b = false.
Proof.
- intros. elim (sumbool_of_bool (Nle a b)). intro H0. rewrite (Nle_double_mono _ _ H0) in H.
+ intros. elim (sumbool_of_bool (Nleb a b)). intro H0. rewrite (Nleb_double_mono _ _ H0) in H.
discriminate H.
trivial.
Qed.
-Lemma Nlt_double_plus_one_mono_conv :
+Lemma Nltb_double_plus_one_mono_conv :
forall a b,
- Nle (Ndouble_plus_one a) (Ndouble_plus_one b) = false ->
- Nle a b = false.
+ Nleb (Ndouble_plus_one a) (Ndouble_plus_one b) = false ->
+ Nleb a b = false.
Proof.
- intros. elim (sumbool_of_bool (Nle a b)). intro H0.
- rewrite (Nle_double_plus_one_mono _ _ H0) in H. discriminate H.
+ intros. elim (sumbool_of_bool (Nleb a b)). intro H0.
+ rewrite (Nleb_double_plus_one_mono _ _ H0) in H. discriminate H.
trivial.
Qed.
-(* A [min] function over [N] *)
+(* An alternate [min] function over [N] *)
-Definition Nmin (a b:N) := if Nle a b then a else b.
+Definition Nmin' (a b:N) := if Nleb a b then a else b.
+
+Lemma Nmin_Nmin' : forall a b, Nmin a b = Nmin' a b.
+Proof.
+ unfold Nmin, Nmin', Nleb; intros.
+ rewrite nat_of_Ncompare.
+ generalize (leb_compare (nat_of_N a) (nat_of_N b));
+ destruct (nat_compare (nat_of_N a) (nat_of_N b));
+ destruct (leb (nat_of_N a) (nat_of_N b)); intuition.
+ lapply H1; intros; discriminate.
+ lapply H1; intros; discriminate.
+Qed.
Lemma Nmin_choice : forall a b, {Nmin a b = a} + {Nmin a b = b}.
Proof.
- unfold Nmin in |- *. intros. elim (sumbool_of_bool (Nle a b)). intro H. left. rewrite H.
- reflexivity.
- intro H. right. rewrite H. reflexivity.
+ unfold Nmin in *; intros; destruct (Ncompare a b); auto.
Qed.
-Lemma Nmin_le_1 : forall a b, Nle (Nmin a b) a = true.
+Lemma Nmin_le_1 : forall a b, Nleb (Nmin a b) a = true.
Proof.
- unfold Nmin in |- *. intros. elim (sumbool_of_bool (Nle a b)). intro H. rewrite H.
- apply Nle_refl.
- intro H. rewrite H. apply Nlt_le_weak. assumption.
+ intros; rewrite Nmin_Nmin'.
+ unfold Nmin'; elim (sumbool_of_bool (Nleb a b)). intro H. rewrite H.
+ apply Nleb_refl.
+ intro H. rewrite H. apply Nltb_leb_weak. assumption.
Qed.
-Lemma Nmin_le_2 : forall a b, Nle (Nmin a b) b = true.
+Lemma Nmin_le_2 : forall a b, Nleb (Nmin a b) b = true.
Proof.
- unfold Nmin in |- *. intros. elim (sumbool_of_bool (Nle a b)). intro H. rewrite H. assumption.
- intro H. rewrite H. apply Nle_refl.
+ intros; rewrite Nmin_Nmin'.
+ unfold Nmin'; elim (sumbool_of_bool (Nleb a b)). intro H. rewrite H. assumption.
+ intro H. rewrite H. apply Nleb_refl.
Qed.
Lemma Nmin_le_3 :
- forall a b c, Nle a (Nmin b c) = true -> Nle a b = true.
+ forall a b c, Nleb a (Nmin b c) = true -> Nleb a b = true.
Proof.
- unfold Nmin in |- *. intros. elim (sumbool_of_bool (Nle b c)). intro H0. rewrite H0 in H.
+ intros; rewrite Nmin_Nmin' in *.
+ unfold Nmin' in *; elim (sumbool_of_bool (Nleb b c)). intro H0. rewrite H0 in H.
assumption.
- intro H0. rewrite H0 in H. apply Nlt_le_weak. apply Nle_lt_trans with (b := c); assumption.
+ intro H0. rewrite H0 in H. apply Nltb_leb_weak. apply Nleb_ltb_trans with (b := c); assumption.
Qed.
Lemma Nmin_le_4 :
- forall a b c, Nle a (Nmin b c) = true -> Nle a c = true.
+ forall a b c, Nleb a (Nmin b c) = true -> Nleb a c = true.
Proof.
- unfold Nmin in |- *. intros. elim (sumbool_of_bool (Nle b c)). intro H0. rewrite H0 in H.
- apply Nle_trans with (b := b); assumption.
+ intros; rewrite Nmin_Nmin' in *.
+ unfold Nmin' in *; elim (sumbool_of_bool (Nleb b c)). intro H0. rewrite H0 in H.
+ apply Nleb_trans with (b := b); assumption.
intro H0. rewrite H0 in H. assumption.
Qed.
Lemma Nmin_le_5 :
forall a b c,
- Nle a b = true -> Nle a c = true -> Nle a (Nmin b c) = true.
+ Nleb a b = true -> Nleb a c = true -> Nleb a (Nmin b c) = true.
Proof.
intros. elim (Nmin_choice b c). intro H1. rewrite H1. assumption.
intro H1. rewrite H1. assumption.
Qed.
Lemma Nmin_lt_3 :
- forall a b c, Nle (Nmin b c) a = false -> Nle b a = false.
+ forall a b c, Nleb (Nmin b c) a = false -> Nleb b a = false.
Proof.
- unfold Nmin in |- *. intros. elim (sumbool_of_bool (Nle b c)). intro H0. rewrite H0 in H.
+ intros; rewrite Nmin_Nmin' in *.
+ unfold Nmin' in *. intros. elim (sumbool_of_bool (Nleb b c)). intro H0. rewrite H0 in H.
assumption.
- intro H0. rewrite H0 in H. apply Nlt_trans with (b := c); assumption.
+ intro H0. rewrite H0 in H. apply Nltb_trans with (b := c); assumption.
Qed.
Lemma Nmin_lt_4 :
- forall a b c, Nle (Nmin b c) a = false -> Nle c a = false.
+ forall a b c, Nleb (Nmin b c) a = false -> Nleb c a = false.
Proof.
- unfold Nmin in |- *. intros. elim (sumbool_of_bool (Nle b c)). intro H0. rewrite H0 in H.
- apply Nlt_le_trans with (b := b); assumption.
+ intros; rewrite Nmin_Nmin' in *.
+ unfold Nmin' in *. elim (sumbool_of_bool (Nleb b c)). intro H0. rewrite H0 in H.
+ apply Nltb_leb_trans with (b := b); assumption.
intro H0. rewrite H0 in H. assumption.
Qed.
diff --git a/theories/NArith/Ndigits.v b/theories/NArith/Ndigits.v
index ed8ced5b..dcdb5f92 100644
--- a/theories/NArith/Ndigits.v
+++ b/theories/NArith/Ndigits.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Ndigits.v 8736 2006-04-26 21:18:44Z letouzey $ i*)
+(*i $Id: Ndigits.v 10739 2008-04-01 14:45:20Z herbelin $ i*)
Require Import Bool.
Require Import Bvector.
@@ -577,13 +577,6 @@ Qed.
(** Number of digits in a number *)
-Fixpoint Psize (p:positive) : nat :=
- match p with
- | xH => 1%nat
- | xI p => S (Psize p)
- | xO p => S (Psize p)
- end.
-
Definition Nsize (n:N) : nat := match n with
| N0 => 0%nat
| Npos p => Psize p
diff --git a/theories/NArith/Ndist.v b/theories/NArith/Ndist.v
index d5bfc15c..af90b8e7 100644
--- a/theories/NArith/Ndist.v
+++ b/theories/NArith/Ndist.v
@@ -5,7 +5,7 @@
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Ndist.v 8733 2006-04-25 22:52:18Z letouzey $ i*)
+(*i $Id: Ndist.v 10739 2008-04-01 14:45:20Z herbelin $ i*)
Require Import Arith.
Require Import Min.
diff --git a/theories/NArith/Nnat.v b/theories/NArith/Nnat.v
index 94f50bd0..bc3711ee 100644
--- a/theories/NArith/Nnat.v
+++ b/theories/NArith/Nnat.v
@@ -6,15 +6,21 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Nnat.v 9551 2007-01-29 15:13:35Z bgregoir $ i*)
+(*i $Id: Nnat.v 10739 2008-04-01 14:45:20Z herbelin $ i*)
Require Import Arith_base.
Require Import Compare_dec.
Require Import Sumbool.
Require Import Div2.
+Require Import Min.
+Require Import Max.
Require Import BinPos.
Require Import BinNat.
+Require Import BinInt.
Require Import Pnat.
+Require Import Zmax.
+Require Import Zmin.
+Require Import Znat.
(** Translation from [N] to [nat] and back. *)
@@ -108,6 +114,30 @@ Proof.
apply N_of_nat_of_N.
Qed.
+Lemma nat_of_Nminus :
+ forall a a', nat_of_N (Nminus a a') = ((nat_of_N a)-(nat_of_N a'))%nat.
+Proof.
+ destruct a; destruct a'; simpl; auto with arith.
+ case_eq (Pcompare p p0 Eq); simpl; intros.
+ rewrite (Pcompare_Eq_eq _ _ H); auto with arith.
+ rewrite Pminus_mask_diag. simpl. apply minus_n_n.
+ rewrite Pminus_mask_Lt. pose proof (nat_of_P_lt_Lt_compare_morphism _ _ H). simpl.
+ symmetry; apply not_le_minus_0. auto with arith. assumption.
+ pose proof (Pminus_mask_Gt p p0 H) as H1. destruct H1 as [q [H1 _]]. rewrite H1; simpl.
+ replace q with (Pminus p p0) by (unfold Pminus; now rewrite H1).
+ apply nat_of_P_minus_morphism; auto.
+Qed.
+
+Lemma N_of_minus :
+ forall n n', N_of_nat (n-n') = Nminus (N_of_nat n) (N_of_nat n').
+Proof.
+ intros.
+ pattern n at 1; rewrite <- (nat_of_N_of_nat n).
+ pattern n' at 1; rewrite <- (nat_of_N_of_nat n').
+ rewrite <- nat_of_Nminus.
+ apply N_of_nat_of_N.
+Qed.
+
Lemma nat_of_Nmult :
forall a a', nat_of_N (Nmult a a') = (nat_of_N a)*(nat_of_N a').
Proof.
@@ -175,3 +205,176 @@ Proof.
pattern n' at 1; rewrite <- (nat_of_N_of_nat n').
symmetry; apply nat_of_Ncompare.
Qed.
+
+Lemma nat_of_Nmin :
+ forall a a', nat_of_N (Nmin a a') = min (nat_of_N a) (nat_of_N a').
+Proof.
+ intros; unfold Nmin; rewrite nat_of_Ncompare.
+ unfold nat_compare.
+ destruct (lt_eq_lt_dec (nat_of_N a) (nat_of_N a')) as [[|]|];
+ simpl; intros; symmetry; auto with arith.
+ apply min_l; rewrite e; auto with arith.
+Qed.
+
+Lemma N_of_min :
+ forall n n', N_of_nat (min n n') = Nmin (N_of_nat n) (N_of_nat n').
+Proof.
+ intros.
+ pattern n at 1; rewrite <- (nat_of_N_of_nat n).
+ pattern n' at 1; rewrite <- (nat_of_N_of_nat n').
+ rewrite <- nat_of_Nmin.
+ apply N_of_nat_of_N.
+Qed.
+
+Lemma nat_of_Nmax :
+ forall a a', nat_of_N (Nmax a a') = max (nat_of_N a) (nat_of_N a').
+Proof.
+ intros; unfold Nmax; rewrite nat_of_Ncompare.
+ unfold nat_compare.
+ destruct (lt_eq_lt_dec (nat_of_N a) (nat_of_N a')) as [[|]|];
+ simpl; intros; symmetry; auto with arith.
+ apply max_r; rewrite e; auto with arith.
+Qed.
+
+Lemma N_of_max :
+ forall n n', N_of_nat (max n n') = Nmax (N_of_nat n) (N_of_nat n').
+Proof.
+ intros.
+ pattern n at 1; rewrite <- (nat_of_N_of_nat n).
+ pattern n' at 1; rewrite <- (nat_of_N_of_nat n').
+ rewrite <- nat_of_Nmax.
+ apply N_of_nat_of_N.
+Qed.
+
+(** Properties concerning [Z_of_N] *)
+
+Lemma Z_of_nat_of_N : forall n:N, Z_of_nat (nat_of_N n) = Z_of_N n.
+Proof.
+ destruct n; simpl; auto; symmetry; apply Zpos_eq_Z_of_nat_o_nat_of_P.
+Qed.
+
+Lemma Z_of_N_eq : forall n m, n = m -> Z_of_N n = Z_of_N m.
+Proof.
+ intros; f_equal; assumption.
+Qed.
+
+Lemma Z_of_N_eq_rev : forall n m, Z_of_N n = Z_of_N m -> n = m.
+Proof.
+ intros [|n] [|m]; simpl; intros; try discriminate; congruence.
+Qed.
+
+Lemma Z_of_N_eq_iff : forall n m, n = m <-> Z_of_N n = Z_of_N m.
+Proof.
+ split; [apply Z_of_N_eq | apply Z_of_N_eq_rev].
+Qed.
+
+Lemma Z_of_N_le : forall n m, (n<=m)%N -> (Z_of_N n <= Z_of_N m)%Z.
+Proof.
+ intros [|n] [|m]; simpl; auto.
+Qed.
+
+Lemma Z_of_N_le_rev : forall n m, (Z_of_N n <= Z_of_N m)%Z -> (n<=m)%N.
+Proof.
+ intros [|n] [|m]; simpl; auto.
+Qed.
+
+Lemma Z_of_N_le_iff : forall n m, (n<=m)%N <-> (Z_of_N n <= Z_of_N m)%Z.
+Proof.
+ split; [apply Z_of_N_le | apply Z_of_N_le_rev].
+Qed.
+
+Lemma Z_of_N_lt : forall n m, (n<m)%N -> (Z_of_N n < Z_of_N m)%Z.
+Proof.
+ intros [|n] [|m]; simpl; auto.
+Qed.
+
+Lemma Z_of_N_lt_rev : forall n m, (Z_of_N n < Z_of_N m)%Z -> (n<m)%N.
+Proof.
+ intros [|n] [|m]; simpl; auto.
+Qed.
+
+Lemma Z_of_N_lt_iff : forall n m, (n<m)%N <-> (Z_of_N n < Z_of_N m)%Z.
+Proof.
+ split; [apply Z_of_N_lt | apply Z_of_N_lt_rev].
+Qed.
+
+Lemma Z_of_N_ge : forall n m, (n>=m)%N -> (Z_of_N n >= Z_of_N m)%Z.
+Proof.
+ intros [|n] [|m]; simpl; auto.
+Qed.
+
+Lemma Z_of_N_ge_rev : forall n m, (Z_of_N n >= Z_of_N m)%Z -> (n>=m)%N.
+Proof.
+ intros [|n] [|m]; simpl; auto.
+Qed.
+
+Lemma Z_of_N_ge_iff : forall n m, (n>=m)%N <-> (Z_of_N n >= Z_of_N m)%Z.
+Proof.
+ split; [apply Z_of_N_ge | apply Z_of_N_ge_rev].
+Qed.
+
+Lemma Z_of_N_gt : forall n m, (n>m)%N -> (Z_of_N n > Z_of_N m)%Z.
+Proof.
+ intros [|n] [|m]; simpl; auto.
+Qed.
+
+Lemma Z_of_N_gt_rev : forall n m, (Z_of_N n > Z_of_N m)%Z -> (n>m)%N.
+Proof.
+ intros [|n] [|m]; simpl; auto.
+Qed.
+
+Lemma Z_of_N_gt_iff : forall n m, (n>m)%N <-> (Z_of_N n > Z_of_N m)%Z.
+Proof.
+ split; [apply Z_of_N_gt | apply Z_of_N_gt_rev].
+Qed.
+
+Lemma Z_of_N_of_nat : forall n:nat, Z_of_N (N_of_nat n) = Z_of_nat n.
+Proof.
+ destruct n; simpl; auto.
+Qed.
+
+Lemma Z_of_N_pos : forall p:positive, Z_of_N (Npos p) = Zpos p.
+Proof.
+ destruct p; simpl; auto.
+Qed.
+
+Lemma Z_of_N_abs : forall z:Z, Z_of_N (Zabs_N z) = Zabs z.
+Proof.
+ destruct z; simpl; auto.
+Qed.
+
+Lemma Z_of_N_le_0 : forall n, (0 <= Z_of_N n)%Z.
+Proof.
+ destruct n; intro; discriminate.
+Qed.
+
+Lemma Z_of_N_plus : forall n m:N, Z_of_N (n+m) = (Z_of_N n + Z_of_N m)%Z.
+Proof.
+ destruct n; destruct m; auto.
+Qed.
+
+Lemma Z_of_N_mult : forall n m:N, Z_of_N (n*m) = (Z_of_N n * Z_of_N m)%Z.
+Proof.
+ destruct n; destruct m; auto.
+Qed.
+
+Lemma Z_of_N_minus : forall n m:N, Z_of_N (n-m) = Zmax 0 (Z_of_N n - Z_of_N m).
+Proof.
+ intros; do 3 rewrite <- Z_of_nat_of_N; rewrite nat_of_Nminus; apply inj_minus.
+Qed.
+
+Lemma Z_of_N_succ : forall n:N, Z_of_N (Nsucc n) = Zsucc (Z_of_N n).
+Proof.
+ intros; do 2 rewrite <- Z_of_nat_of_N; rewrite nat_of_Nsucc; apply inj_S.
+Qed.
+
+Lemma Z_of_N_min : forall n m:N, Z_of_N (Nmin n m) = Zmin (Z_of_N n) (Z_of_N m).
+Proof.
+ intros; do 3 rewrite <- Z_of_nat_of_N; rewrite nat_of_Nmin; apply inj_min.
+Qed.
+
+Lemma Z_of_N_max : forall n m:N, Z_of_N (Nmax n m) = Zmax (Z_of_N n) (Z_of_N m).
+Proof.
+ intros; do 3 rewrite <- Z_of_nat_of_N; rewrite nat_of_Nmax; apply inj_max.
+Qed.
+
diff --git a/theories/NArith/Pnat.v b/theories/NArith/Pnat.v
index 88abc700..2c007398 100644
--- a/theories/NArith/Pnat.v
+++ b/theories/NArith/Pnat.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Pnat.v 5920 2004-07-16 20:01:26Z herbelin $ i*)
+(*i $Id: Pnat.v 9883 2007-06-07 18:44:59Z letouzey $ i*)
Require Import BinPos.
@@ -14,7 +14,7 @@ Require Import BinPos.
(** Properties of the injection from binary positive numbers to Peano
natural numbers *)
-(** Original development by Pierre Crégut, CNET, Lannion, France *)
+(** Original development by Pierre Crégut, CNET, Lannion, France *)
Require Import Le.
Require Import Lt.