summaryrefslogtreecommitdiff
path: root/theories/MSets/MSetList.v
diff options
context:
space:
mode:
authorGravatar Enrico Tassi <gareuselesinge@debian.org>2015-01-25 14:42:51 +0100
committerGravatar Enrico Tassi <gareuselesinge@debian.org>2015-01-25 14:42:51 +0100
commit7cfc4e5146be5666419451bdd516f1f3f264d24a (patch)
treee4197645da03dc3c7cc84e434cc31d0a0cca7056 /theories/MSets/MSetList.v
parent420f78b2caeaaddc6fe484565b2d0e49c66888e5 (diff)
Imported Upstream version 8.5~beta1+dfsg
Diffstat (limited to 'theories/MSets/MSetList.v')
-rw-r--r--theories/MSets/MSetList.v21
1 files changed, 8 insertions, 13 deletions
diff --git a/theories/MSets/MSetList.v b/theories/MSets/MSetList.v
index d9b1fd9b..fb0d1ad9 100644
--- a/theories/MSets/MSetList.v
+++ b/theories/MSets/MSetList.v
@@ -56,7 +56,7 @@ Module Ops (X:OrderedType) <: WOps X.
Definition singleton (x : elt) := x :: nil.
- Fixpoint remove x s :=
+ Fixpoint remove x s : t :=
match s with
| nil => nil
| y :: l =>
@@ -228,16 +228,14 @@ Module MakeRaw (X: OrderedType) <: RawSets X.
Notation Inf := (lelistA X.lt).
Notation In := (InA X.eq).
- (* TODO: modify proofs in order to avoid these hints *)
- Hint Resolve (@Equivalence_Reflexive _ _ X.eq_equiv).
- Hint Immediate (@Equivalence_Symmetric _ _ X.eq_equiv).
- Hint Resolve (@Equivalence_Transitive _ _ X.eq_equiv).
+ Existing Instance X.eq_equiv.
+ Hint Extern 20 => solve [order].
Definition IsOk s := Sort s.
Class Ok (s:t) : Prop := ok : Sort s.
- Hint Resolve @ok.
+ Hint Resolve ok.
Hint Unfold Ok.
Instance Sort_Ok s `(Hs : Sort s) : Ok s := { ok := Hs }.
@@ -343,7 +341,6 @@ Module MakeRaw (X: OrderedType) <: RawSets X.
induction s; simpl; intros.
intuition. inv; auto.
elim_compare x a; inv; rewrite !InA_cons, ?IHs; intuition.
- left; order.
Qed.
Lemma remove_inf :
@@ -402,8 +399,8 @@ Module MakeRaw (X: OrderedType) <: RawSets X.
Global Instance union_ok s s' : forall `(Ok s, Ok s'), Ok (union s s').
Proof.
repeat rewrite <- isok_iff; revert s s'.
- induction2; constructors; try apply @ok; auto.
- apply Inf_eq with x'; auto; apply union_inf; auto; apply Inf_eq with x; auto.
+ induction2; constructors; try apply @ok; auto.
+ apply Inf_eq with x'; auto; apply union_inf; auto; apply Inf_eq with x; auto; order.
change (Inf x' (union (x :: l) l')); auto.
Qed.
@@ -412,7 +409,6 @@ Module MakeRaw (X: OrderedType) <: RawSets X.
In x (union s s') <-> In x s \/ In x s'.
Proof.
induction2; try rewrite ?InA_cons, ?Hrec, ?Hrec'; intuition; inv; auto.
- left; order.
Qed.
Lemma inter_inf :
@@ -440,7 +436,6 @@ Module MakeRaw (X: OrderedType) <: RawSets X.
Proof.
induction2; try rewrite ?InA_cons, ?Hrec, ?Hrec'; intuition; inv; auto;
try sort_inf_in; try order.
- left; order.
Qed.
Lemma diff_inf :
@@ -477,7 +472,7 @@ Module MakeRaw (X: OrderedType) <: RawSets X.
equal s s' = true <-> Equal s s'.
Proof.
induction s as [ | x s IH]; intros [ | x' s'] Hs Hs'; simpl.
- intuition.
+ intuition reflexivity.
split; intros H. discriminate. assert (In x' nil) by (rewrite H; auto). inv.
split; intros H. discriminate. assert (In x nil) by (rewrite <-H; auto). inv.
inv.
@@ -825,7 +820,7 @@ Module MakeRaw (X: OrderedType) <: RawSets X.
Lemma compare_spec_aux : forall s s', CompSpec eq L.lt s s' (compare s s').
Proof.
- induction s as [|x s IH]; intros [|x' s']; simpl; intuition.
+ induction s as [|x s IH]; intros [|x' s']; simpl; intuition.
elim_compare x x'; auto.
Qed.