diff options
author | Samuel Mimram <smimram@debian.org> | 2008-07-25 15:12:53 +0200 |
---|---|---|
committer | Samuel Mimram <smimram@debian.org> | 2008-07-25 15:12:53 +0200 |
commit | a0cfa4f118023d35b767a999d5a2ac4b082857b4 (patch) | |
tree | dabcac548e299fee1da464c93b3dba98484f45b1 /theories/Logic/EqdepFacts.v | |
parent | 2281410e38ef99d025ea77194585a9bc019fdaa9 (diff) |
Imported Upstream version 8.2~beta3+dfsgupstream/8.2.beta3+dfsg
Diffstat (limited to 'theories/Logic/EqdepFacts.v')
-rw-r--r-- | theories/Logic/EqdepFacts.v | 23 |
1 files changed, 8 insertions, 15 deletions
diff --git a/theories/Logic/EqdepFacts.v b/theories/Logic/EqdepFacts.v index 94a577ca..844bff88 100644 --- a/theories/Logic/EqdepFacts.v +++ b/theories/Logic/EqdepFacts.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: EqdepFacts.v 9597 2007-02-06 19:44:05Z herbelin $ i*) +(*i $Id: EqdepFacts.v 11095 2008-06-10 19:36:10Z herbelin $ i*) (** This file defines dependent equality and shows its equivalence with equality on dependent pairs (inhabiting sigma-types). It derives @@ -104,7 +104,7 @@ Implicit Arguments eq_dep1 [U P]. (** Dependent equality is equivalent to equality on dependent pairs *) -Lemma eq_sigS_eq_dep : +Lemma eq_sigT_eq_dep : forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q), existT P p x = existT P q y -> eq_dep p x q y. Proof. @@ -113,26 +113,19 @@ Proof. apply eq_dep_intro. Qed. +Notation eq_sigS_eq_dep := eq_sigT_eq_dep (only parsing). (* Compatibility *) + Lemma equiv_eqex_eqdep : forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q), - existS P p x = existS P q y <-> eq_dep p x q y. + existT P p x = existT P q y <-> eq_dep p x q y. Proof. split. (* -> *) - apply eq_sigS_eq_dep. + apply eq_sigT_eq_dep. (* <- *) destruct 1; reflexivity. Qed. -Lemma eq_sigT_eq_dep : - forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q), - existT P p x = existT P q y -> eq_dep p x q y. -Proof. - intros. - dependent rewrite H. - apply eq_dep_intro. -Qed. - Lemma eq_dep_eq_sigT : forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q), eq_dep p x q y -> existT P p x = existT P q y. @@ -258,7 +251,7 @@ Section Corollaries. Proof. intro eq_dep_eq; red; intros. apply eq_dep_eq. - apply eq_sigS_eq_dep. + apply eq_sigT_eq_dep. assumption. Qed. @@ -270,7 +263,7 @@ Notation eq_dep_eq__inj_pairT2 := eq_dep_eq__inj_pair2. (************************************************************************) -(** *** C. Definition of the functor that builds properties of dependent equalities assuming axiom eq_rect_eq *) +(** * Definition of the functor that builds properties of dependent equalities assuming axiom eq_rect_eq *) Module Type EqdepElimination. |