summaryrefslogtreecommitdiff
path: root/theories/Logic/EqdepFacts.v
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <smimram@debian.org>2008-07-25 15:12:53 +0200
committerGravatar Samuel Mimram <smimram@debian.org>2008-07-25 15:12:53 +0200
commita0cfa4f118023d35b767a999d5a2ac4b082857b4 (patch)
treedabcac548e299fee1da464c93b3dba98484f45b1 /theories/Logic/EqdepFacts.v
parent2281410e38ef99d025ea77194585a9bc019fdaa9 (diff)
Imported Upstream version 8.2~beta3+dfsgupstream/8.2.beta3+dfsg
Diffstat (limited to 'theories/Logic/EqdepFacts.v')
-rw-r--r--theories/Logic/EqdepFacts.v23
1 files changed, 8 insertions, 15 deletions
diff --git a/theories/Logic/EqdepFacts.v b/theories/Logic/EqdepFacts.v
index 94a577ca..844bff88 100644
--- a/theories/Logic/EqdepFacts.v
+++ b/theories/Logic/EqdepFacts.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: EqdepFacts.v 9597 2007-02-06 19:44:05Z herbelin $ i*)
+(*i $Id: EqdepFacts.v 11095 2008-06-10 19:36:10Z herbelin $ i*)
(** This file defines dependent equality and shows its equivalence with
equality on dependent pairs (inhabiting sigma-types). It derives
@@ -104,7 +104,7 @@ Implicit Arguments eq_dep1 [U P].
(** Dependent equality is equivalent to equality on dependent pairs *)
-Lemma eq_sigS_eq_dep :
+Lemma eq_sigT_eq_dep :
forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q),
existT P p x = existT P q y -> eq_dep p x q y.
Proof.
@@ -113,26 +113,19 @@ Proof.
apply eq_dep_intro.
Qed.
+Notation eq_sigS_eq_dep := eq_sigT_eq_dep (only parsing). (* Compatibility *)
+
Lemma equiv_eqex_eqdep :
forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q),
- existS P p x = existS P q y <-> eq_dep p x q y.
+ existT P p x = existT P q y <-> eq_dep p x q y.
Proof.
split.
(* -> *)
- apply eq_sigS_eq_dep.
+ apply eq_sigT_eq_dep.
(* <- *)
destruct 1; reflexivity.
Qed.
-Lemma eq_sigT_eq_dep :
- forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q),
- existT P p x = existT P q y -> eq_dep p x q y.
-Proof.
- intros.
- dependent rewrite H.
- apply eq_dep_intro.
-Qed.
-
Lemma eq_dep_eq_sigT :
forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q),
eq_dep p x q y -> existT P p x = existT P q y.
@@ -258,7 +251,7 @@ Section Corollaries.
Proof.
intro eq_dep_eq; red; intros.
apply eq_dep_eq.
- apply eq_sigS_eq_dep.
+ apply eq_sigT_eq_dep.
assumption.
Qed.
@@ -270,7 +263,7 @@ Notation eq_dep_eq__inj_pairT2 := eq_dep_eq__inj_pair2.
(************************************************************************)
-(** *** C. Definition of the functor that builds properties of dependent equalities assuming axiom eq_rect_eq *)
+(** * Definition of the functor that builds properties of dependent equalities assuming axiom eq_rect_eq *)
Module Type EqdepElimination.